
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

Approved for public release; distribution is unlimited

ASSESSING THE POTENTIAL VALUE OF SEMANTIC
WEB TECHNOLOGIES IN SUPPORT OF MILITARY

OPERATIONS

by

Samuel G. Chance
Marty G. Hagenston

September 2003

 Thesis Advisor: Alex Bordetsky
 Second Reader: Douglas P. Horner

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
September 2003

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE: Assessing the Potential Value of Semantic Web
Technologies in Support of Military Operations
6. AUTHOR(S) Samuel G. Chance and Marty G. Hagenston

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
Recent military operations have redefined the way modern warfare is waged. In a deliberate effort to achieve and

retain information dominance and decision superiority, many innovative technologies have emerged to assist the human war
fighter. Unquestionably, these technologies have generated resounding successes on the battlefield, the likes of which have
never been seen. With all the success, however, there are still areas for improvement as the potential exists for further reducing
already short sensor-to-shooter times.

The current World Wide Web (WWW) is largely a human-centric information space where humans exchange and
interpret data ([2] Berners-Lee, 1, 1999). The Semantic Web (SWEB) is not a separate Web, but an extension of the current
one in which content is given well-defined meaning, better enabling computers and people to work in cooperation (Berners-Lee
et al). The result is the availability of the various backgrounds, experiences, and abilities of the contributing communities
through the self-describing content populating the SWEB ([2] Berners-Lee, 1999). This thesis assesses current SWEB
technologies that promise to make disparate data sources machine interpretable for use in the construction of actionable
knowledge with the intent of further reducing sensor-to-shooter times.

The adoption of the SWEB will quietly be realized and soon machines will prove to be of greater value to war
fighting. When machines are able to interpret and process content before human interaction and analysis begins, their value
will be further realized. This off-loading, or delegation, will produce faster sensor-to-shooter times and assist in achieving the
speed required to achieve victory on any battlefield.

15. NUMBER OF
PAGES

289

14. SUBJECT TERMS Semantic Web, XML, OWL, DAML, RDF, Knowledge Base, Database,
Jini, Java, Agents, Ontologies, CoABS, Data Sources, Knowledge Generation, Jess

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

ASSESSING THE POTENTIAL VALUE OF SEMANTIC WEB
TECHNOLOGIES IN SUPPORT OF MILITARY OPERATIONS

Samuel G. Chance
Lieutenant, United States Navy

B.S., Florida A&M University, 1995

Marty G. Hagenston
Major, United States Army

B.A., Washington State University, 1991

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN INFORMATION TECHNOLOGY MANAGEMENT

from the

NAVAL POSTGRADUATE SCHOOL
September 2003

Authors: Samuel G. Chance

 Marty G. Hagenston

Approved by: Alexander Bordetsky
 Thesis Advisor

 Douglas P. Horner
 Second Reader

 Dan C. Boger
 Chairman, Department of Information Sciences

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

Recent military operations have redefined the way modern warfare is waged. In a

deliberate effort to achieve and retain information dominance and decision superiority,

many innovative technologies have emerged to assist the human war fighter.

Unquestionably, these technologies have generated resounding successes on the

battlefield, the likes of which have never been seen. With all the success, however, there

are still areas for improvement as the potential exists for further reducing already short

sensor-to-shooter times.

The current World Wide Web (WWW) is largely a human-centric information

space where humans exchange and interpret data ([2] Berners-Lee, 1, 1999). The

Semantic Web (SWEB) is not a separate Web, but an extension of the current one in

which content is given well-defined meaning, better enabling computers and people to

work in cooperation (Berners-Lee et al). The result is the availability of the various

backgrounds, experiences, and abilities of the contributing communities through the self-

describing content populating the SWEB ([2] Berners-Lee, 1999). This thesis assesses

current SWEB technologies that promise to make disparate data sources machine

interpretable for use in the construction of actionable knowledge with the intent of further

reducing sensor to shooter times.

The adoption of the SWEB will quietly be realized and soon machines will prove

to be of greater value to war fighting. When machines are able to interpret and process

content before human interaction and analysis begins, their value will be further realized.

This off-loading, or delegation, will produce faster sensor-to-shooter times and assist in

achieving the speed required to achieve victory on any battlefield.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. PROBLEM STATEMENT ...1
B. SURVEY OF THE SEMANTIC WEB (SWEB)...1

1. The Vision...1
2. Components of the Semantic Web (SWEB)2

a. Standardized Knowledge Representation (KR) Language3
b. Ontologies..3
c. Logic ..3
d. Agents ..4

C. MOTIVATION ..4
1. Hypotheses ..5
2. Model...6
3. Leverage Points ..7
4. Model Analysis ...9

a. Feedback Loop ..9
b. Polarity Indicators...9
c. Observe Phase ...9
d. Orient Phase..11
e. Decide Phase ...12
f. Act Phase ...13

D. RESEARCH EFFORTS..13
E. THESIS ORGANIZATION..14
F. ONWARD TO THE SWEB ..14

II. THEORY ..15
A. BACKGROUND ..15

1. Knowledge Warrior (Tofler, 1993, 140)...16
2. Semantic Theories and Knowledge Views17

a. Extensional Semantic Theory...17
b. Intensional Semantic Theory ...18

B. THE MEANING OF KNOWLEDGE..19
1. Knowledge Characteristic Analysis..22

a. Complexity...22
b. Dispersed and Disorganized ...24

C. COMMON AND DISTRIBUTED KNOWLEDGE (Ф).............................32
1. Common Knowledge..32
2. Distributed Knowledge..33
3. Common and Distributed Knowledge Combined...........................34

D. KNOWLEDGE MANAGEMENT LIFECYCLE.......................................35
E. SUMMARY ..35

1. Causal Loop Diagram..36

 viii

III. NETWORK DATA SOURCES: BUILDING BLOCKS OF KNOWLEDGE39
A. DATA SOURCES: THE BUILDING BLOCKS OF KNOWLEDGE......39

1. Unstructured Data Source ..40
2. Semi-Structured Data..41
3. Structured Data Source...42

B. XML AND DATABASES ...47
1. XML Driven Route Application ...51

C. XML AND RELATIONAL STRUCTURES...54
D NATIVE XML DATABASES...56

1. Application Areas of NXDs...58
2. NXD Implementations ...60

E. SEMANTIC STORAGE ...60
F. ENABLED DATA..61
G. SUMMARY ..61

IV. DISTRIBUTED COMPUTING: SMARTLY CONNECTING SMALL
WORLDS..63
A. DISTRIBUTED COMPUTING..63

1. Client/Server Architecture..66
2. CORBA ...67
3. Java RMI ..69
4. Microsoft™ DCOM ...71
5. Message Oriented Middleware ...72
6. Jini™ ...73
7. CoABS Grid..82
8. Challenges in Distributed Computing..85

B. WEB SERVICES ...86
1. Basic Operational Model...89
2. Known Challenges to Web Services ...93

C. SEMANTIC WEB SERVICES...94
1. Approaches to SWEB Services ...95

a. Mapping Approach ...96
b. Semantics Embedded in the WSDL..99
c. Implement DAML-S/OWL-S ..101

D. SUMMARY ..104

V. AGENTS ...107
A. BACKGROUND ..107
B. AGENTS DEFINED ..107

1. What Are Agents?..107
C. INTELLIGENT AGENTS ..110

1. Agent Decision-Making ...111
2. Decision Trees...111
3. Agents in Action ...112
4. Adoption Inhibitors ...113

D. AGENT EXAMPLES – CONCRETIZING THE CONCEPTS114
1. ArchAngel Agent Based System Prototype114

 ix

2. Agent Triad...115
3. REPEAT Agents...116

a. Overview ..116
b. Functional Flow..117
c. Control Flow ...120
d. Example Code ...122

4. (PR) Message Agents ...128
a. Overview ..128
b. Functional Flow..131
c. Control Flow ...133
d. Example Code ...135

E. SUMMARY ..138

VI. ONTOLOGY: FRAMEWORK OF KNOWLEDGE ...141
A. BACKGROUND ..141

1. Ontology Defined ...141
2. Commitment...142

B. THE WEB ONTOLOGY LANGUAGE (OWL).......................................143
1. OWL Features..146

a. OWL Sub-languages ...146
2. OWL Relationships..148
3. Description Logic Foundation ..150

C. COMPONENTS OF AN ONTOLOGY...150
1. Basic Components of an Ontology..151

a. Classes ...151
b. Subclasses..154
c. Properties...155
d. Instances..158
e. Structure ..160

D. ONTOLOGY DESIGN..162
1. Design Criteria ...162

a. Domain and Scope ..162
b. Purpose ..164

2. Potential Military Uses of an Ontology..164
a. Command and Control ...164
b. Logistics...164
c. Decision Support Systems...165
d. Modeling and Simulation ...165
e. IFF...166

3. Evaluating a Specific Purpose with Competency Questions........168
4. Competency Question Analysis: How Is the Data Stored in the

GH5 Relational Database? ..171
5. Extendibility/Reuse ..173
6. Ontology Design Methodology Highlights177

a. Feasibility Assessment (FA) ...178
b. Enumeration of Terms, Concepts and Relationships179

 x

c. Form the Class Hierarchy ..179
7. Design Patterns...181

a. Articulation Ontology ...181
b. Knowledge Module..187

E. SUMMARY ..190

VII. SWEB KNOWLEDGE BASE ..193
A. BACKGROUND ..193
B. KNOWLEDGE BASE DEFINITION..194
C. KNOWLEDGE BASE COMPONENTS ...198

1. Facts ..198
2. Belief..199
3. Representation..199
4. Reasoning..202

a. Truth Axiom ..203
b. Entailment ...204
c. Computer Reasoning ..204
d. Reasoning Examples...209
e. Functions...216
f. Traceability..217
g. Maintenance..218

5. External Rule Based System ...218
a. Rules ..219
b. Rule Based System Components ..222
c. Rule Based System Example with Jess223

D. KNOWLEDGE BASE DESIGN...232
1. Modular Approach ..232
2. Knowledge Base/Inference Engine ...233
3. Knowledge Clusters ...233
4. Loosely Coupled...234
5. Network...236

E. KNOWLEDGE BASE ORGANIZATION..237
1. Domain Oriented Knowledge Structuring (DOKS)......................238

a. Knowledge Modules ..238
b. Knowledge Packet Structures ...238

F. SUMMARY ..239

VIII. CONCLUSION ..241
A. CONCLUSION ..241

1. Refined Hypothesis ..241
a. Hypothesis C..241

B. RESEARCH QUESTIONS...241
C. MODEL ..242

1. Analysis of Refined Model with Enabled Leverage Points243
a. Leverage Point 1 (LP1) Apply KR and Domain Theory......243
b. Leverage Point 2 (LP2) Apply Machine Reasoning and

Rules ..244

 xi

c. Leverage Point 3 (LP3) Apply Agents and Machines..........244
d. Leverage Point 4 (LP4) Apply Computer Reasoning and

Rules ..245
e. Leverage Point 5 (LP5) Apply Agents and Services245
f. Leverage Point 6 (LP6) Apply KB and Knowledge

Construction..245
2. Overall Model...246

D. FUTURE WORK...247
1. Integration of All the Components...247
2. Trust/Security...248
3. Transition Guidance ..248

APPENDIX. GLOSSARY..249

LIST OF REFERENCES..255

INITIAL DISTRIBUTION LIST ...263

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF FIGURES

Figure 1. Causal Loop Diagram Mapped to OODA Loop. ...7
Figure 2. Military Decision Making Causal Loop Diagram and Potential Leverage

Points..8
Figure 3. The Ontology of Extensional Semantics (After: Gardenfors, 2000, 153).18
Figure 4. The Ontology of Intensional Semantics (After: Gardenfors, 2000, 153).19
Figure 5. Knowledge Meaning Triangle (After: Ogden, 1923, 11).21
Figure 6. Information Overload Myth (From: [2] Pohl, 2000, 4).27
Figure 7. Interpretation Continuum (After: Obrst, 2003, 105)..29
Figure 8. Knowledge Hierarchy (After: Chorfas, 2002). ..30
Figure 9. Process for Managing Knowledge Lifecycle (After: Nissen, 2002, 255).......35
Figure 10. SWEB Causal Loop Diagram. ...37
Figure 11. Semi-Structured OTH Message. ..41
Figure 12. XML Formatted OTH Message. ..43
Figure 13. Hybrid Data/Knowledge Model (After: Smart, 2003)....................................46
Figure 14. Relational Database Exposed as XML. ...48
Figure 15. Route Entity-Relation Diagram. ..52
Figure 16. Sample from Annotated Schema and Entity-Relation Diagram.53
Figure 17. Example of CORBA Architectural Model (From: Nagappan, 2003, 9).68
Figure 18. RMI Client/Server Communication (After: Edwards, 1999, 724)...................70
Figure 19. Jini™ Conceptual Usage (From: Jini™ TE, 1999, 1)......................................76
Figure 20. Components of a Jini™ Service Item (After: Edwards, 1999, 70).81
Figure 21. CoABS Grid Graphical User Interface. ...83
Figure 22. CoABS in Relation to Other Technologies..85
Figure 23. XML for Encoding Distributed Communication (After: Nagappan, 2003,

25). ...88
Figure 24. Web Services Operational Model (From: Nagappan, 2003, 27).89
Figure 25. Jini™/CoABS Operational Model (From: Edwards, 1999, 14).......................90
Figure 26. Top Level of Service Ontology..103
Figure 27. An Agent Takes Sensory Input from Its Environment and Outputs Actions

That Affect It. This Interaction Is Typically Ongoing, and Non-
Terminating. (From: Weiss, 2001, 29)...108

Figure 28. An Agent Fortified with Memory (From: Weiss, 2001, 41)..........................112
Figure 29. Agent Triad Design Pattern. ..116
Figure 30. REPEAT Agents Functional Flow...119
Figure 31. REPEAT Agents System Sequence Diagram. ...121
Figure 32. Message Agents Functional Flow..133
Figure 33. Message Agents System Sequence Diagram. ..135
Figure 34. Semantic Wave (After: Berners-Lee, 2003). ...143
Figure 35. Semantic Layer Cake (After: Berners-Lee, 2001). ..145
Figure 36. OWL Syntactic Construct. ...146
Figure 37. Web Ontology Language Hierarchy. ...147

 xiv

Figure 38. OWL Sub-language Relationships...149
Figure 39. Military Route Class Identification..153
Figure 40. Military Route Sub-Classing..155
Figure 41. Properties. ..157
Figure 42. Instantiation of an Ontology. ...159
Figure 43. Embedded Taxonomic Structures within a Concept View of an Ontology...161
Figure 44. Domain Determination Example. ..163
Figure 45. IFF Foundation Ontology and Derived General Ontology Classification

Framework (After: (http://suo.ieee.org/IFF)..167
Figure 46. General Classification in the Dublin Core Tag Set..168
Figure 47. Specific Purpose Example. ..169
Figure 48. Data Model Enumeration Subclass..172
Figure 49. Data Model Conceptualization Domain Concept Tree..................................173
Figure 50. Generic Hub 5 Controlled Vocabulary and OWL Markup Example.177
Figure 51. “Is –a” Test. ...180
Figure 52. Physical Granularity Mismatch Example. ...184
Figure 53. Conceptual Mismatch Example. ..185
Figure 54. Articulation Abstraction...186
Figure 55. XSLT Articulation Instance Transform. ..187
Figure 56. DGTR KMOD Components Example. ..189
Figure 57. DGTR KMOD Supporting Components. ..190
Figure 58. SWEB Knowledge Base Schematic...198
Figure 59. Tracked Class Representation Example...201
Figure 60. OWL Knowledge Representation Example...202
Figure 61. Anti-aircraft Modus Ponens Example..206
Figure 62. Unsatisfiable Example. ..211
Figure 63. Established New Classes for FaCT Classification...212
Figure 64. Movement Classification Property. ...212
Figure 65. FaCT Reasoner Results from Self Propelled and Towed Axioms.................214
Figure 66. KB Mobility Classification FaCT Reasoner Results.215
Figure 67. Completed Model Using FaCT Reasoner. ...216
Figure 68. TELL/ASK Functions..217
Figure 69. Anatomy of a Simple Jess Rule..220
Figure 70. RuleML Version of a Jess Rule and Its XSL Transformation into Valid

Jess Syntax. ..221
Figure 71. Rule Based System Data Flow...222
Figure 72. Jess Deftemplate: Unit-Information. ...225
Figure 73. Jess Deftemplate: Threat-Capability. ..225
Figure 74. Assertion of Deftemplates to Working Memory. ..226
Figure 75. Assertion of Deffacts to Jess Working Memory.227
Figure 76. Jess Rules Asserted. ...228
Figure 77. Rule Activations Associated with Facts. ...229
Figure 78. Activation and Firing of Unit-Match-Capability Rule...................................229
Figure 79. Activation and Firing of Unit-Name-Nomatch Rule.230
Figure 80. Rete Network Formed from Match-Unit-Capability Example.231

 xv

Figure 81. Example Knowledge Module Visibility (After: Wachmuth, 1991)...............235
Figure 82. SWEB Network Knowledge Base Architecture. ...237
Figure 83. Spider Route Knowledge Module with Partitions. ..239
Figure 84. Military Decision Making CLD and Potential Leverage Points.243
Figure 85. Military Decision Making CLD with Enabled Leverage Points....................246
Figure 86. Integrated Semantic Web Architecture (Generic)..247

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 xvii

LIST OF TABLES

Table 1. Research Hypotheses. ..6
Table 2. Advantages of Distributed Computing (After: Nagappan, 2003, 5).65
Table 3. Java RMI Components (After: Nagappan, 2003, 12).70
Table 4. Dimensions of Web Services Compared (IBM). ...95
Table 5. Properties of Agents (From: Tanenbaum, 2002, 175).110
Table 6. Domain Messages. ...129
Table 7. Example Facts..203
Table 8. Entailment Example...204
Table 9. Modus Ponens..205
Table 10. Forward Chaining Example. ..207
Table 11. Backwards Chaining Example. ..208
Table 12. Overarching Research Questions...242

 xviii

THIS PAGE INTENTIONALLY LEFT BLANK

 xix

ACKNOWLEDGMENTS

Let us run with perseverance the race marked out for us. (Hebrews 12:1b). I have

completed this race and have persevered. Moreover, my family has endured much for

me, and our nation. I thank my wife and all our children for their selflessness, sacrifice

and love. I thank the Lord, above all, for allowing me this opportunity. I also thank the

faculty for their flexibility and support. I sincerely appreciate Mr. Doug Horner’s

generosity, insight and support. Finally, I thank my thesis partner for setting such a good

example of diligence, initiative and intelligence. His steadfast ability to acquire and

assimilate information is most inspiring. It was truly an honor to be associated and

partnered with him.

 - Sam

A heart-felt thanks to my wife and children for the support and love they give me;

to my research partner for his superior competence and passion; and to my advisors for

their wisdom.

 -Marty

 xx

THIS PAGE INTENTIONALLY LEFT BLANK

 xxi

EXECUTIVE SUMMARY

Recent military operations have redefined the way modern warfare is waged. In a

deliberate effort to achieve and retain information dominance and decision superiority,

many innovative technologies have emeasdfsdafasdfdasfrged to assist the human war

fighter. Unquestionably, these technologies have generated resounding successes on the

battlefield, the likes of which have never been seen. With all the success, however, there

are still areas for improvement as the potential exists for further reducing already short

sensor-to-shooter times.

This thesis assesses current Semantic Web (SWEB) technologies that promise to

make disparate data sources machine interpretable for use in the construction of

actionable knowledge with intent of further reducing sensor to shooter times. To that

end, this thesis is organized in the following manner:

The Introduction chapter, Chapter I, sets the foundation for the SWEB and why it

is important to the military. It briefly surveys the vision and component technologies of

the SWEB, and then presents two hypotheses about the SWEB. To continue we examine

our version of the Observe, Orient, Decide, Act (OODA) Loop modeled using a Causal

Loop diagram (CLD) from the theories of Systems Dynamics (SD). The CLD will

indicate (causal) relationships between elements of the process. We highlight the

bottlenecks and delays of the current decision making system, and we identify the

potential leverage points for process improvement. These leverage points are the areas

we will target for potential application of SWEB technologies. The remaining chapters

are dedicated to describing these technologies and demonstrating their strengths,

weaknesses and functionality through examples and technical analysis.

The Theory chapter, Chapter II, provides a “forward look” through the processes

contributing to the promised output of the Semantic Web (SWEB); that is, the

construction of knowledge. Through the principles, theories and concepts presented in

this chapter we establish a premise from which to achieve a common frame of reference

of the concept knowledge as it relates to the SWEB. The common frame of reference

 xxii

will serve as the starting point for our discussion regarding the complexities, dynamics

and challenges an integrated SWEB application/system must overcome to achieve its

goal. It will also assist in understanding the contributions each SWEB

technology/component analyzed in this work, and how each helps to construct knowledge

from enabled network content.

Chapter III, Data Sources, serves to underscore the importance of data sources

residing on a network to the SWEB’s knowledge generation process. We discuss various

types of data sources likely encountered and methods to successfully enable them. The

implications of structured data, and how the Extensible Markup Language (XML)1

relates to different database models are key points of this chapter. Another point this

chapter develops is the importance of representing data in such a way that it becomes

machine-interpretable information. With machine-readable information present we are

able to develop agents capable of automatically, autonomously understanding the

information and responding appropriately. However, prior to discussing agents, we

discuss the methods agents will employ to access and “read” this stored information.

These methods may be classified under the umbrella of “Distributed Computing.”

Effective distributed computing technologies and techniques factor importantly in

connecting “small worlds” of information repositories.

The Distributed Computing chapter, Chapter IV, demonstrates an effective means

to interact with and across the network. Our emphasis will be on how the present and

potential distributed computing mechanisms can best help to enable the SWEB. The

progression of distributed computing models has seen a number of designs, and it fulfills

a vital role in a new distributed computing paradigm called “Web services.” We believe

Web services, more precisely, SWEB services will prove integral to improving workflow

between organizations. To understand the SWEB services’ role it is important to survey

the progression of distributed computing. As such, we highlight some of the more

prevalent distributed computing models including Web services, which are presently

1 This paper assumes a basic working knowledge of XML. Many sources are available to learn XML

including [http://www.w3c.org/xml].

 xxiii

achieving much notoriety in the distributed computing world. We then discuss SWEB

services, an extension of Web services. The SWEB services model will be analyzed for

utility and applicability to the SWEB, especially for military purposes.

Chapter V, Agents, discusses the notion of software agents, their relationships to

each other and to humans, and considerations for their employment in military

operations. Additionally, this chapter discusses a sampling of the agents we developed in

support of an agent-based prototype application called “ArchAngel.” The purpose of this

chapter is two-fold. That is, it provides an abstract conceptual underpinning for agents,

and follows with concrete illustrations.

The Ontology chapter, Chapter VI, highlights the importance of the ontology to

the SWEB. We review the Web Ontology Language (OWL) and analyze the basic

components of an ontology. We highlight ontology design criteria, methodologies and

various ontology design patterns. Our discussion will culminate by exposing several of

the challenges a developer will face while designing and deploying an ontology for

practical use.

The purpose of Chapter VII, SWEB Knowledge Base, is to demonstrate the

importance of the network to the Knowledge Base of a Semantic Web (SWEB)

application and its critical components. We review design patterns and considerations

contrasting the Knowledge Base (KB) of an SWEB application with the KBs supporting

the Expert Systems (ES) of the 1990’s. We demonstrate how the SWEB KB can reason

against enabled content and discuss techniques for design and organization. This chapter

is intended to guide the reader in attaining a better understanding of the functions and

interactions of a traditional KB, as well as a “networked” KB, as it will likely occur in

SWEB applications. We will discuss the KB in the traditional AI terms from its

definition, design criteria, components, organization. This discussion will rely on the

recollection of many of the foundational concepts we have discussed in early chapters as

the KB is where all the concepts converge.

 xxiv

In our concluding chapter, Chapter VII, we offer a refined hypothesis describing

our vision of the transition to the Semantic Web. We identify six key leverage points

within the Causal Loop Diagram wherein SWEB technologies will help to reduce

decision cycle times, and decrease uncertainty.

1

I. INTRODUCTION

The Semantic Web is an extension of the current web in which
information is given well-defined meaning, better enabling computers and
people to work in cooperation.

-- Tim Berners-Lee, James Hendler, Ora Lassila, The
Semantic Web, Scientific American, May 2001

A. PROBLEM STATEMENT

Recent military operations have redefined the way modern warfare is waged. In a

deliberate effort to achieve and retain information dominance and decision superiority,

many innovative technologies have emerged to assist the human war fighter.

Unquestionably, these technologies have generated resounding successes on the

battlefield, the likes of which have never been seen. The speed, precision, and accuracy

involved in the process of evaluating data, applying knowledge, generating decisions, and

ultimately carrying out effective strikes are the foundation for these successes. With all

the success, however, there are still areas for improvement as the potential exists for

reducing already short sensor-to-shooter times further. The subject of this study was to

evaluate the technologies of the Semantic Web (SWEB) for potential application to

Military Operations. The goal of this effort was to assess potential technology insertion

points into processes within Military Operations with the potential to further assist the

decision maker in making more efficient and effective decisions; where efficient equates

to minimum time, and effective equates to the correct decision, all supported by the most

relevant intelligence. For this work our surrogate for intelligence is knowledge, and the

difference between knowledge and information is that knowledge is actionable. The

generation of actionable knowledge is the ultimate goal of the SWEB.

B. SURVEY OF THE SEMANTIC WEB (SWEB)

1. The Vision
The World Wide Web Consortium (W3C), the proponent of the SWEB, defines

the SWEB as the representation of data on the World Wide Web (W3C Semantic Web,

2

2001). The current World Wide Web (WWW) is largely a human centric information

space where humans exchange and interpret data ([2] Berners-Lee, 1, 1999). The SWEB

is not a separate Web, but an extension of the current one in which content is given well-

defined meaning, better enabling computers and people to work in cooperation (Berners-

Lee et al). In the SWEB information space, the content residing in documents, portions

of documents, or other mediums is described by explicit relationships between the

entities/concepts of the domain creating machine interpretable content ([2] Berners-Lee,

2, 1999). The SWEB then connects the machine interpretable content available from the

distributed, independent contributing communities forming the Web of understanding or

the SWEB ([2] Berners-Lee, 4, 1999). The result is the availability of the various

backgrounds, experiences, and abilities of the contributing communities through the self-

describing content populating the SWEB ([2] Berners-Lee, 1999). The availability of

such content allows for efficient aggregation, from which machine interpretable

knowledge and understanding can ultimately be constructed (Daconta et al., 17, 2003).

The construction of knowledge from disparate, raw data is the ultimate promise the

technologies of the SWEB intend to deliver. The potential of realizing this promise in the

military domain must be pursued.

2. Components of the Semantic Web (SWEB)
The SWEB is composed of three basic components, Knowledge Representation

(KR) languages, ontologies, and logic. Although not a primary SWEB component, agent

technology is an important beneficiary of the SWEB environment worthy of mention in

this section. While all components currently operate independently on the WWW of

today, the real power of the SWEB will not be realized until all are operating seamlessly

and synergistically in concert. To ensure familiarity with the concepts of the SWEB we

will discuss each of the primary components of the SWEB including agents, due to the

potential value they will add. This section will serve to establish the background required

to gain a basic understanding of the SWEB for the purposes of understanding this work

as it will be applied in the military domain.

3

a. Standardized Knowledge Representation (KR) Language
Standardization of KR languages is a significant step in ensuring the

SWEB will become reality. Such languages rely on abstracting logic in user friendly

syntax to express and represent concepts in machine interpretable form. The Extensible

Markup Language (XML) and Resource Definition Framework (RDF), now well

established with significant implementation experience, provide the baseline for the

emerging Web Ontology Language (OWL), the impending W3C Recommendation for a

standard KR language. OWL provides the abstract syntax enabling content to be tagged

with semantic meaning by describing it relative to other described entities/concepts

within the domain in the form of triples (subject, predicates, and objects) and establishing

relationships between them. OWL further describes the triples and their relationships by

assigning a Uniform Resource Identifier (URI), or name space, allowing the content to

assert in machine interpretable syntax (logic) how a given triple is related to other triples.

The functionality and implementation examples of OWL will be covered in detail later in

this work. Once OWL is established, the concept of ontologies must be formalized to

ensure described content is unambiguously interpreted by capable machines.

b. Ontologies
Ontologies, or “the theory about the state of existence in a domain,”

provide an unambiguous, machine interpretable solution ensuring entities are interpreted

as their meaning was intended. Ontologies for specific domains establish classes,

properties and relationships governing the content by a machine interpretable, logic based

specification expressed by the ontology. Not only does the ontology establish the

specification for individuals, classes and properties, but they also establish how entities in

the domain described within the ontology relate. Ontologies are a critical component of

the SWEB and because of this we devote an entire chapter to its study.

c. Logic
A portion of the logic component of the SWEB is partially embedded

within the ontology. Additional logic can be applied by incorporating external,

situational or event driven rules. The logic embedded within the standardized KR

language and the ontology, combined with the optional external rules, form the domain

4

theory. The domain theory governs the actions of all activities within the domain. Logic

enables machines and software agents the ability to reason against the described content

to answer questions, classify concepts and fire rules triggering action. Once this

component is established machines can negotiate, render conclusions based on an

interpreted set of facts, or optimize functions based on constraints. These actions will be

accomplished with little or no human interaction, freeing the human to focus on the tasks

requiring higher order reasoning. Logic and reasoning will be discussed in detail in later

chapters.

d. Agents
The maturation and adoption of agent technology will change the roles of

computers as we know them. Agents, empowered by the semantically rich environment

will be used to accomplish the mundane, repetitive, and time consuming tasks currently

occupying the majority of human computing time. For example, E-commerce

transactions will rise to a new level of efficiency as mobile, autonomous agents transit

between vendors to accomplish Business-to-Business (B2B) or Business-to-Consumer

(B2C) tasks on behalf of human actors. Agents can continue their tasks indefinitely as

they have unlimited endurance, yet still require a human user to input parameters

regulating their actions and behaviors. Agents will be capable of communicating with

other agents to pass value added information forming systems of agents. Agent

technology is currently immature, but as the SWEB expands, agent technology will be

sure to follow.

C. MOTIVATION

The war fighter combats uncertainty by collecting, analyzing and ultimately

acting on knowledge. The intelligence collection platforms of today are capable of

generating incalculable amounts of raw data. These data are required to be analyzed,

prioritized and disseminated by humans interfacing with networks. Because of the

reliance on the human, even for the menial tasks such as classifying, comparing and

correlating, we are subject to the limitations of the human cognitive capacity. Today’s

operations, even with the application of Information Technology (IT), reveal an alarming

amount of unread message traffic, unused sensor data, and uncorrelated facts, largely

5

attributed to data overload. As the proliferation of sensors and bandwidth increases, the

quantity of available data increases, thus imposing a time and manpower overhead to

interpret the data for decision-makers. More and more aspects of war-fighting are not

only leaving the realm of human senses, but crossing outside the limits of human reaction

times (Adams, 2001, 58). Furthermore, the proliferation of information-based systems

will produce substantially greater data overload eventually making it impossible for

humans to absorb and discern the necessary information/knowledge value from the

mounting data glut. The results are decisions based on incomplete information. The

technologies of the SWEB allow machines to assist humans in interpreting the data glut

and incorporating it in the construction of domain knowledge. The use of machine

interpretable data is the key to constructing knowledge, knowledge is the key to

“battlefield dominance,” and the speed at which we act on knowledge is the key to

battlefield success.

Because organizations, individuals and the military desire the highest possible

degree of certainty from which to make decisions, they have pursued knowledge

wherever it was perceived to exist. While this pursuit of knowledge is sound and

justified theoretically, it is extremely difficult, time consuming and complex to realize in

practice with the current WWW technologies. The SWEB and its supporting

technologies will assist in the implementation of the above paradigm by abstracting the

complexities and addressing the difficulties associated with data aggregation and

knowledge representation, all of which is ultimately used in the construction of

knowledge. The ability to leverage machine interpretable data to construct knowledge

and the interpretation of that knowledge by machines will further assist military decision

makers in achieving a higher degree of predictability within a given problem space than

was previously possible - all with decreased human intervention.

1. Hypotheses

Our research exposed two competing hypotheses associated with the widespread

adoption of the SWEB. Hypothesis A argues the transition to the SWEB will be swift,

disruptive and revolutionary with a degree of payoff for early adopters. Conversely,

Hypothesis B argues a gradual transition or evolution to the SWEB. It sees little

6

incentive to the early adopter as enterprises realize the full potential of the SWEB cannot

be reached until a significant number of adopters proliferate. Both complete hypotheses

can be found in Table 1.

Hypothesis A Hypothesis B

The application of SWEB
technologies including ontologies, agents,
knowledge networks and reasoning will
revolutionize the current WWW and be
adopted quickly. The relative speed of
adoption will stimulate tool and
methodology development, as well as the
necessary cultural changes. It will
therefore allow the technologies of the
SWEB to be adopted relatively swiftly,
with considerable disruption equivalent to
the disruptions produced by a revolution.

SWEB technologies have
limitations and constraints. Hype has
created the illusion the SWEB is the
solution to the problems of data overload
and information/knowledge management.
The barriers and adoption inhibitors may
make the SWEB Revolution more of a
gradual evolution unrealized by users of the
current WWW. The current barriers to
entry as well as adoption inhibitors include
technology, culture, training/education,
tools, and above all, realizable and
quantifiable, short term Return On
Investment (ROI) or Knowledge Value
Added (KVA). The slow payoff from the
SWEB investment will likely curtail the
largely academic implementation
momentum and subdue any incentives or
competitive advantage early adopters can
achieve.

Table 1. Research Hypotheses.

2. Model
To lend rigor to our hypotheses and to ground it in a familiar concept, we elected

to map our model to the well known Observe, Orient, Decide and Act (OODA) Loop

invented by Colonel John Boyd, United States Air Force (Ret.) (See Figure 1). Figure 1

overlays the traditional OODA Loop model on to our model, a Causal Loop Diagram

(CLD). The OODA Loop theory is based on the fact that to be successful in warfare an

individual must continuously Observe, Orient, Decide and Act, culminating in a decision.

The more rapidly an individual/system can cycle the OODA loop, the more rapidly one

can make sound, decisions. The time it takes to cycle the OODA Loop is called cycle

time (Boyd, 1970’s).

7

Figure 1. Causal Loop Diagram Mapped to OODA Loop.

To continue we will examine our version of the OODA Loop modeled using a

CLD from the theories of Systems Dynamics (SD). The CLD will indicate (causal)

relationships between elements of the process. We highlight the bottlenecks and delays

of the current decision making system, and we identify the potential leverage points for

process improvement. These leverage points are the areas we will target for potential

application of SWEB technologies. The remainder of this work is dedicated to describing

these technologies and demonstrating their strengths, weaknesses and functionality

through examples and technical analysis.

3. Leverage Points
With our model grounded in the concept of the OODA Loop, we intend to

generate a degree of familiarity to achieve a better understanding of our model, as they

are essentially the same. Our model depicted in Figure 2 highlights the bottlenecks and

8

inefficiencies of a typical deliberate military decision making process2. These are the

areas we will keep in mind when discussing the SWEB Technologies. Since speed is a

key aspect of decision making, many of the potential leverage points are located at

positions of naturally occurring delays. The other leverage points we have identified are

located at points of human inefficiencies or points where error can be introduced in the

decision making process. The leverage points are identified in Figure 2 by numbered red

dots and are further elaborated in the discussion that follows.

Warfare

Uncertainty
+

Intelligence
Collection

Assets

Gross
Collection

Rate

+

+

-

Average
Collection

Asset
Efficiency

IntelligenceFailure
Fraction

-

Gross
Data

Collection

+

+
+

Noise
Coefficient

Analysis
Backlog+

Gross
Analysis

Rate

-

of Analysts

AverageHuman
Rate of Analysis

+ +

Intelligence
Yield(Net
Analysis)

+

Intelligence
Q/C

+

Actionable
Intelligence

Background
Intelligence

+
+

Decision
Rate +

-

Perceived
Value

Density

B

Intelligence
Transfer

Rate

-

Dispersion
Factor

Pressure For
Intelligence

Yield

Error
Fraction

-

-

+

-

Dangerous
SHORT-CUT

Delay

Delay

Delay

Maximum
Human

Rate of Analysis

+

Goal:
Speed

and
Accuracy

Equations and Substitutions

(Background
Knowledge)

(New
Knowledge)

(Knowledge
Yield)

(Knowledge
Transfer)

(Interpretation)

(Interpretation)

(Data)

Analysis= Interpretation

Knowledge=Intelligence

Interpretation+ Data= Information

Information+ Old Knowledge= New
Knowledge

(Density)

Completed
Analysis-

LP1

LP2

LP3

LP4

LP5

LP = Leverage
Point

-

R

LP6

Decision
Cycle

Figure 2. Military Decision Making Causal Loop Diagram and Potential Leverage

Points.

2 The rapid military decision making process is also appropriately described by this model.

9

4. Model Analysis

a. Feedback Loop
To ensure our model is understood we will step through the elements by

OODA Phase. We will communicate the meaning of our model in terms of SD Theory.

For readers unfamiliar with SD, the notation in the diagram includes arcs connecting the

variables of the model. The arcs represent causal links between variables. Each causal

link is assigned a polarity, either positive (+) or negative (-), to indicate how the

dependent variable changes as the independent variable changes. Important loops are

named and highlighted by a loop indicator. The two significant loops in our model are

Dangerous Shortcut, a reinforcing (R) or growth loop, and Decision Making Cycle a

balancing (B) or goal seeking loop.

b. Polarity Indicators
The polarity indicators on the arcs are interpreted as follows. A positive

(+) link means if the cause increases, then the dependent variable increases beyond what

it would have otherwise. Additionally, a positive causal link means if the causal variable

decreases, then the dependent variable decreases below what it would be otherwise.

Conversely, a negative causal link means an increase in the casual variable results in a

decrease in the dependent variable below what it would have otherwise; and a decrease in

the causal variable leads to an increase in the dependent variable above what it would be

otherwise. The rest of the model is interpreted by reading the text descriptors. There will

be noticeable overlap between the phases. The overlap is important, because it can result

in a boundary condition having its own special set of dynamics. As you read the text

description we recommend following along with the model in Figure 2.

c. Observe Phase

This portion of the model starts at Warfare and continues to Perceived

Value Density. The following is an interpretation of the Observe Phase of our model:

• Warfare leads to increased Uncertainty.

• Increased Uncertainty leads to increases in the deployment of Intelligence
Collection Assets

10

• Intelligence Failure Fraction has a negative effect on Intelligence
Collection Assets

• More Intelligence Collection Assets result in a higher Gross Data
Collection Rate

• Average Collection Asset Efficiency has a decreasing effect on Gross Data
Collection Rate. This occurs because the asset can either be operating at
100% efficiency, meaning it is collecting at its target collection rate or
some value less than 100% such as 70% in which it is collecting below its
target collection rate. Therefore, if Average Collection Asset Efficiency is
below 100% the Gross Data Collection rate will be negatively affected.

• An increasing Gross Data Collection Rate, after some Delay, leads to
more Gross Data Collection

• Noise Coefficient has a positive effect on Gross Data Collection. That is
to say that more noise leads to more Gross Data Collection as Gross Data
includes “good” and “bad” data

• (Dangerous Short-cut Arc) If exercised, the Gross Data Collection can
have a negative effect on Actionable Intelligence. See LP 2 below.

• Perceived Value Density has a positive effect on Pressure for Intelligence
Yield. The more active we perceive the collection environment, the more
we desire to collect, often disregarding our system’s capacity to
process/analyze the results

(1) Leverage Point 1 (LP1). Leverage Point 1 is identified

between the interaction of Data Collection Rate and Gross Data Collection. The delay

depicts the Collection Delay originating from the collection of undescribed, potentially

unorganized data without meaning from the collection assets. Resources must be

allocated from the system to sort, analyze and disseminate the data to the analyst(s)

responsible for interpreting the data. Additionally, the Noise Coefficient can interject

valueless background clutter into Gross Data Collection. If the Noise Coefficient is high,

it can tremendously increase the amount of gross data collected, causing additional

resource allocation to the processing effort occurring before interpretation or analysis.

This delay, the focus of this leverage point, can be substantial and is directly related to

the amount of data being collected.

(2) Leverage Point 2 (LP2). Leverage Point 2 is the dynamics

resulting from the Perceived Value Density of the Decision Maker and the Pressure for

11

Intelligence Yield imposed by the system as a consequence. If the Pressure for

Intelligence Yield gets too great, there may be temptation to take a dangerous shortcut.

The shortcut occurs when data is forwarded directly from the Gross Data Collection to

the Decision Maker through Actionable Intelligence. If this occurs Gross Data Collection

has a negative effect on Actionable Intelligence because it interjects unevaluated, raw

data into the Actionable Intelligence (New Knowledge) the Decision Maker is basing

decisions. The results of this dynamic can slow the Net Decision Rate resulting from the

pollution of Actionable Intelligence by raw unevaluated data.

d. Orient Phase
The Orient Phase begins with Analysis Backlog and ends with Intelligence

Yield. The following is an interpretation of the Orient Phase of our model:

• Greater (or less) Gross Data Collection increases (or decreases) Analysis
Backlog

• Perceived Value Density has a positive effect on Pressure for Intelligence
Yield

• Increased Pressure for Intelligence Yield tends to increase the Average
Human Rate of Analysis with penalty

• Average rate of Human Analysis has a positive effect on both the Gross
Analysis Rate (Interpretation) and Error Fraction

• Increased Gross Analysis Rate (Interpretation) decreases the Analysis
Backlog

• Maximum Human Rate of Analysis (MHRA) has a positive impact on
Gross Analysis Rate

• More Intelligence Quality Control (Q/C) reduces Error Fraction

• Analysis Backlog with Analysis Delay has a negative effect on Completed
Analysis

• Error Fraction has a negative effect on Completed Analysis

• Completed Analysis has a positive effect on Intelligence Yield (Net
Analysis)

(1) Leverage Point 3 (LP3). LP3 is targeted at the Analysis

Delay largely caused by the Maximum Human Rate of Analysis (MHRA). The MHRA

is a result of the human cognitive limits.

12

(2) Leverage Point 4 (LP4). LP4 is targeted at a potential,

unanticipated side effect from MHRA and the effects of Pressure for Intelligence Yield.

The more rapidly a human analyzes material the greater the fatigue factor. The more

fatigue, the larger the Error Fraction. The larger Error Fraction does not result in

Completed Analysis which is directly counter to our process goal. The most important

point from LP4 is the fact that the human can analyze, at a certain rate, for a certain

amount of time. After a point, fatigue, errors and the temptation for abandoning the

process and taking short cuts increase and lead to short-cuts to and abandonment of the

process. The resulting positive reinforcing feedback loop ultimately causes a slower

decrease in Uncertainty.

e. Decide Phase
The Decide Phase begins with Intelligence Yield and ends with Actionable

Intelligence. The following is an interpretation of the Decide Phase of our model:

• Intelligence Yield has a negative effect on Intelligence Transfer Rate

• Increasing Dispersion also decreases Intelligence Transfer Rate

• Greater Intelligence Transfer Rate, after a delay, leads to more Actionable
Intelligence

• Background Intelligence also has a positive effect on Actionable
Intelligence

(1) Leverage Point 5 (LP5). LP5 focuses on the transfer delay

in the Intelligence Transfer Rate between Intelligence Yield and Actionable Intelligence.

The delay is caused by latency in the network, network traffic (bottlenecks/collisions)

and network availability. Additionally, more Intelligence Yield effectively reduces the

Intelligence Transfer Rate as more Intelligence is available but the intrinsic Intelligence

Transfer Rate is unchanged. Finally, the intrinsic Dispersion Factor of knowledge, in this

case our surrogate Intelligence, also affects this leverage point. The higher the

Dispersion Factor the greater the adverse effects on the system’s ability to transfer

intelligence (Intelligence Transfer Rate) to its intended recipient.

13

f. Act Phase
The Act Phase begins with Actionable Intelligence and ends by closing the

balancing or goal seeking feedback loop at Uncertainty. The following is an

interpretation of the Act Phase of our model:

• Actionable Intelligence has a positive effect on Decision Rate

• Actionable Intelligence has a negative effect on Uncertainty, closing the
balancing or goal seeking feedback loop

(1) Leverage Point 6 (LP6). LP6 is found in the added value of

relevant, usable and available Background Intelligence (Background Knowledge) to

create new Actionable Intelligence (New Knowledge). This dynamic is better explained

by the New Knowledge Equation: Old Knowledge + Information = New Knowledge.

From this equation we gain a better appreciation for the importance of Background

Intelligence to the process. This equation will be further explained later in the work.

D. RESEARCH EFFORTS

Our research approach primarily consisted of studying the theoretical concepts

within the SWEB domain, developing the theories through the application of SWEB

technologies in military examples and documenting the results. This process essentially

repeated itself throughout our research. We began by studying XML and realizing its

enormous contributions to the SWEB through its flexibility of use. We explored the

application of the Web Ontology Language (OWL) and developed a series of ontologies

exposing valuable design patterns. We studied collaborative technologies with an

emphasis on software agents developing multiple agents using the Control of Agent-

Based Systems (CoABS) platform. We implemented a working exemplar involving

software agents interacting with data sources available on the network. We subsequently

investigated the concept of a Networked Knowledge Base and how it relates to an

integrated SWEB application. Additionally, we implemented forward chaining computer

reasoning exemplars using ontologies to apply the domain theory. We made significant

inroads to understanding the implementation challenges of SWEB technologies. As we

illustrate in the Future Work section, the integration of the SWEB technologies at the

leverage points we have identified in a working application is a logical next step.

14

E. THESIS ORGANIZATION

The chapters in this thesis discuss the technologies and technology areas central to

the advent of the SWEB. To that end, this thesis is organized in the following manner:

Chapter II explores theories related to forming a common frame of reference when

discussing the SWEB technologies and how they contribute to the construction of

knowledge, the importance of machine interpretable knowledge to the SWEB, the

different characteristics of knowledge and different knowledge types. Chapter III

describes the importance of networked data sources, characteristics and comparison of

Relational Databases (RDB) and Native Extensible Markup Language Databases (NXD),

and methods for enabling inclusion of a data source to drive a SWEB application.

Chapter IV discusses the necessity and importance of distributed computing, an overview

of distributed computing technologies, an overview of web services and SWEB services,

and implementation options. Chapter V outlines the emerging technology of software

agents, agent categories, outlines application areas, describes adoption inhibitors and

challenges, and illustrates the concepts with annotated, working examples. Chapter VI

overviews ontologies, the Web Ontology Language (OWL), knowledge representation

(KR) concepts, ontology design criteria and methodology, classification of ontologies,

and illustrates design patterns grounded in validated OWL examples. Chapter VII

analyzes the concept of the roles and functions of a Knowledge Base (KB) in a SWEB

application, defines KB, details the components of a KB, demonstrates reasoning and the

application of an external, rule based system through examples, and describes design and

organization criteria for a KB.

F. ONWARD TO THE SWEB
Now that we have established a common frame of reference and communicated

the required background information to proceed with our analysis, we must understand

our efforts will focus the SWEB technologies at the leverage points we identified in our

model. To further ground our analysis let us familiarize ourselves with some of the

underlying theories, concepts and principles critical to the understanding of how SWEB

technologies will function in their endeavor to construct knowledge by enabling the

content sources of the WWW.

15

II. THEORY

 Knowledge must become capability

 -Carl Von Clausewitz

A. BACKGROUND
This chapter provides a “forward look” through the processes contributing to the

promised output of the Semantic Web (SWEB); that is, the construction of knowledge.

Through the principles, theories and concepts presented in this chapter we establish a

premise from which to achieve a common frame of reference of knowledge as it relates to

the SWEB. Many of these concepts are intentionally abstracted away from the

user/developer, but the importance of gaining familiarity with the foundational concepts

and underpinnings of the SWEB technologies we will be discussing remains. The

common frame of reference we establish in this chapter will serve as the starting point for

our discussion regarding the complexities, dynamics and challenges an integrated SWEB

application/system must overcome to achieve its goal. Many of these challenges

originate in the foundational concepts. This chapter will also assist in understanding the

contributions each SWEB technology/component analyzed in this work makes toward the

effort of constructing knowledge from enabled network content.

“War is the realm of uncertainty; three quarters of the factors on which actions in

war are based are wrapped in a fog of greater or lesser uncertainty” (Von Clauswitz,

1976, 101). As such, the most popular remedy to counter uncertainty is knowledge

(Davenport, 2000, 25). Therefore, if one possesses “complete and accurate knowledge”

regarding the outcome of a pending decision, one possesses total certainty (Marakas,

1998, 60). While the probability of achieving total certainty in warfare is close to zero,

the probability of complete uncertainty is also close to zero (Marakas, 1998, 60). It is

within these bounds of the decision making continuum the SWEB aims to construct

computer interpretable knowledge from aggregations of enabled content to assist the

military decision maker, ushering in a quiet paradigm shift from a data centric force to a

16

fighting force based on knowledge. Ultimately, the technologies of the SWEB have the

potential to create greater computer assisted efficiencies within the networked

communities of war fighting.

As with most emerging technology initiatives, the Department of Defense (DoD)

has been observing and evaluating the paradigm shift within industry, research

communities and academia looking for opportunity. In recent years DoD has recognized

the potential value added of knowledge driven applications and has focused significant

effort into realizing the transformation. Joint Vision 2020, the Department of Defense’s

guide to the transformation of America’s Armed Forces, outlines the requirements for the

21st Century Joint Force to take advantage of superior information converted to superior

knowledge to achieve “decision superiority” (Joint Vision 2020, 2000, 11-12). While

Joint Vision 2020 mandates the transformation to a knowledge based force, it also

explicitly acknowledges requirements for conversions and transformations of

data/information to generate the relevant knowledge to be applied to the decision, which

will ultimately lead to “decision superiority”. How will these prescribed conversions

occur? What needs to be converted? How will this knowledge be generated? The SWEB

can provide us with part of the answer.

1. Knowledge Warrior (Tofler, 1993, 140)
Alvin and Heidi Toffler, renowned futurists, spoke of “knowledge warfare” as the

most influential factor of the Third Wave form in their 1993 work War and Anti-War

(Toffler, 1993, 139). Clausewitz and Sun Tzu regarded knowledge as critical to

battlefield success. Prosecuting a military campaign requires an enormous amount of

knowledge to succeed. Therefore, the realization of the SWEB, a technology built

around knowledge generation and application should be of great interest to the

Department of Defense. In fact the Department of Defense through the Defense

Advanced Research Projects Agency (DARPA) has sponsored numerous research efforts

focused on such realization3. The SWEB promises to assist users with the discovery,

generation, storage, transfer, maintenance and reuse of knowledge, and cannot be ignored

for its potential applicability to DoD. These activities, once realized and mature, could

3 DARPA Programs found at [www.darpa.mil/body/darpaoff.html], 10 July 2003.

17

have the potential to assist military decision makers by supplying them with the right

knowledge at the right time (Davies, 2003, 2-5), increasing decision rates, and

qualitatively and quantitatively improving decisions. To understand the aspects of

knowledge the SWEB technologies can leverage innovation against, it is necessary to

form a working definition, and more importantly a common frame of reference for the

meaning of knowledge.

2. Semantic Theories and Knowledge Views
Exposure to the different semantic theories or knowledge views is important to

discuss before we can establish the relationship of knowledge to the SWEB. If we

understand the semantic theories we can gain insight to how a domain is attempting to

achieve meaning. Semantic theories determine the view one will take to achieve

interpretation. Our definition will invoke the intensional semantic theory as our concept

of knowledge will be mapped to a set of possible worlds within the SWEB domain. It is

important to note that within a given knowledge application we can implement more than

one semantic theory. We will discuss the extensional and intensional semantic theories in

this section.

a. Extensional Semantic Theory
The extensional semantic theory is perhaps the most intuitive of the

semantic theories. Extensional knowledge is that knowledge specific to a particular

problem or a set of individuals. The extensional knowledge is the A-box or assertional

knowledge about a domain. It is knowledge that can be thought of as a term’s denotation

(Sowa, 2000, 99), or the class of objects which a set refers. In extensional semantics, the

constituents of the language become mapped onto a “world” model (Gardenfors, 2000,

152). These mappings are then formed into sentences mapped to truth values. These

sentences then formulate the truth conditions for this “one world” (Gardenfors, 2000,

152). Knowledge in this category tends to be more dynamic and may require

maintenance and refresh to retain relevancy. An extensional definition for military

helicopters would be a catalog of all military helicopters in the world (Sowa, 2000, 99).

Ontologies capturing entities with regards to their existence can generally be classified as

having an extensional knowledge basis (See Figure 3).

18

Language
(Semantic Model)

Truth Conditions World
(Reality)

The Ontology of
Extensional Semantics

Figure 3. The Ontology of Extensional Semantics (After: Gardenfors, 2000, 153).

b. Intensional Semantic Theory
The intensional semantic theory establishes truth conditions for a set of

“possible worlds”. The intension of a term means its intrinsic meaning or associated

concepts (Sowa, 2000, 99). Intensional knowledge is described as general properties of

the concepts within a domain. This is the T-Box knowledge, or term knowledge. Within

this theory there are multiple circumstances in which a given condition can be considered

true. Put another way, besides the true state of affairs there are a number of other

possible “worlds” (Fagin, 1995, 15). An intensional ontology for military helicopters

would specify properties or criteria for identifying military helicopters without regard to

their possible existence (Sowa, 2000, 99). For instance every helicopter has one or more

main rotors, has one or more engines, has at most one tail rotor and is flown by one or

more pilots. An enumeration of all parts of a helicopter establishes the truth conditions

for all helicopters in our domain of discourse; therefore, it becomes our “possible

worlds”. The preconditions to incorporate this semantic theory are that the truth

conditions of the “worlds” are well understood and somewhat static and predicable.

Extensional knowledge tends not to change rapidly retaining its utility and relevance for

relatively long amounts of time (See Figure 4).

19

Language
(Semantic Model)

The Ontology of
Intensional Semantics

Possible Worlds
(Potential Realities)

Truth
Conditions

Figure 4. The Ontology of Intensional Semantics (After: Gardenfors, 2000, 153).

Now we have been exposed to the general semantic theories and can

distinguish between the two types, let us continue our analysis to establish our common

frame of reference and meaning of knowledge as it relates to the SWEB.

B. THE MEANING OF KNOWLEDGE

The concept of knowledge is very difficult to define, as are most products of the

human mind, including software and intellectual property. Most people when asked to

provide a definition of knowledge could provide a listing of attributes and terms to

describe knowledge based on their own perceptions, but most would have a difficult time

deciding on an acceptable definition. This is understandable, as specifying the definition,

nature and contents of “knowledge” even for experts can be daunting (Housel, 2001, 1).

According to I. A. Richards and C. K. Ogden’s famous study on the influence of

language upon thought, “All definitions are essentially ad hoc.” “They are relevant to

some purpose or situation and consequently are applicable only over a restricted field or

‘universe of discourse’” (Ogden, 1923, 111).

Ogden and Richards’s prescription to this problem requires finding a common set

of referents about which agreement can be secured and locating the required referent

through its connection with these (Ogden, 1923, 113). A referent can be defined

20

according to the Oxford English Dictionary as the “object of a reference”. With this in

mind, we will dissect many of the common definitions of knowledge with the purpose of

distilling a set of attributes to connect to knowledge. Next we will analyze this set of

attributes and their associated implementation challenges and examine how the SWEB

and its supporting technologies will effectively cope with this expected range of

difficulties associated with constructing knowledge into a machine interpretable form.

Through this analysis we will establish a common meaning of knowledge for the purpose

of gaining an understanding of the promised goal of the SWEB.

Fortunately, epistemology, the study of “what knowledge is,” has supplied us with

many definitions4 of knowledge, all derived for different purposes. We will use these

available definitions of knowledge as data input to our analysis to construct a meaning

triangle applicable to the concept of knowledge as it applies to the SWEB. The following

enumeration of knowledge characteristics found below has been extracted from numerous

definitions of knowledge and will be subject of our analysis. These characteristics were

chosen for their frequency of occurrence among many of the different knowledge

definitions and their potential value and challenges they could impose on the realization

of the SWEB. As the analysis proceeds the characteristics listed below will be

decomposed as required to permit discovery of other influential characteristics couched

within. Figure 5, the Knowledge Meaning Triangle, illustrates our points in graphic

form. The one-to-one relationship established by the links between each pair of terms

hides the inherent complexity of a one-to-many relationship (Maedche, 2002, 14). The

links can only be completed when the interpreter processes the term and invokes the

corresponding concept; then links the concept to the term referent in the real world

(Maedche, 2002, 15). Readers should not consider the below enumeration to be

exhaustive.

4 We used elements of the following expert’s definition of knowledge: Sowa, Davenport, Hayek,

Orbst, McGuinness, Klein, Fensel.

21

- Knowledge
Definition
(Symbol)
Subject

Term or Word

`

(Reference)
Predicate
Concept

- Complexity
- Actionable

- Interpretation
- Transferrable

- Knowledge
(Referent)

Object
Real worldStands for

R
efers to

Sy
m

bo
l iz

es

Meaning
Triangle

- Dispersed

Figure 5. Knowledge Meaning Triangle (After: Ogden, 1923, 11).

The Meaning Triangle begins at the lower, left vertex with our stated goal,

‘Knowledge Definition’. The ‘Knowledge Definition’ becomes our symbol or subject

with which we will associate additional ‘Thoughts’ or objects from our dissection of a

representative set of published knowledge definitions. We then proceed up the left leg of

the triangle, the ascending triple, to the apex. The property or predicate ‘Symbolizes’

from the ascending leg becomes the connection between the lower left vertex and the

apex. We read the ascending triple as:

“Knowledge Definition Symbolizes (Substitute a Reference Term from the Apex)

Complexity.”

Next we proceed down the right hand leg of the meaning triangle, using the predicate

‘Refers to’, connecting the apex with the lower right vertex or our ‘Referent’,

‘Knowledge’. We read the descending triple as: “Complexity Refers to Knowledge."

Putting both the ascending and descending triples together we establish:

“Knowledge Definition is Symbolized by Complexity which Refers to Knowledge.”

Next we are able to connect the lower left vertex with the lower right vertex utilizing the

base of the triangle and the predicate ‘Stands for’. We read this as:

“Knowledge Definition Stands for Knowledge.”

Knowledge Characteristics

• Is Experience

• Complexity

• Requires Interpretation

• Embeds in everything

• Has Shape

• Transferable

• Actionable

22

By executing this connection exercise with multiple references we effectively

connect our ‘Knowledge Definition’ with ‘Knowledge’ through the attribute set derived

from the different knowledge definitions on the apex. Each of these connections now

associates meaning through the predicate and establishes our common meaning of

knowledge as it applies to the SWEB. Let us analyze each of these ‘References’ now

associating our Knowledge Definition with the concept of Knowledge to test the validity

of the associations.

1. Knowledge Characteristic Analysis

a. Complexity
The complex nature of knowledge provides one of the most formidable

challenges to the adoptions of the Semantics Web. John Sowa describes knowledge in its

various forms as “Knowledge Soup” due to its inherent complexity and disorganization

(Sowa, 2000, 348). The idea of knowledge as a complex entity is shared by many

leading knowledge researchers (Orbst, 2003, 104) (Davenport, 2000, 9) (Riedl, 2002, 45).

The complex nature of knowledge should not come as a surprise as knowledge

conceptualizes entities of a complex world (Campbell, 1998, 5-9) using the complexity of

the human mind as its primary tool (Waschsmuth, 1991, 4). The complex nature of

knowledge will present some critical challenges to the implementation of the SWEB from

the knowledge acquisition, knowledge representation and computational

(reasoning/inference) perspectives.

There have been many research efforts dedicated to the understanding of

complexity, and as a result, several types of complexity have been developed including

crude, computational, and effective complexity (Gell-Mann, 1997, 5-19). It is not

important to understand complexity theory in its entirety, as this is beyond our scope,

but we should, however, be able to understand why complexity should be included in our

common meaning of the concept of knowledge and what challenges and value it imposes

on the widespread adoption of the SWEB.

23

To accomplish this we will examine Crude Complexity, the simplest type

of complexity, and analyze it with respect to the above knowledge attribute set in an

attempt to discover additional connections with other members of the attribute set

originating from complexity. Crude complexity will be referred to simply as complexity

within the context of this analysis for purposes of being succinct5.

(1) An Analysis of Complexity. Complexity regardless of its

definition is not an entirely intrinsic property of the entity being described (Gell-Mann,

1997, 5). Traits of complexity also depend on the agent describing the entity. Crude

Complexity, one of many types of complexity, is defined as the length of the shortest

message describing the entity (description), the level of detail at which the entity is being

described (granularity) and the language employed (representation method) to

communicate the description (Gell-Mann, 1997, 5). The minimum length [of the

message] will also be affected by the knowledge and understanding of the world that is

assumed (foundational or background knowledge), and can therefore be left out of the

description by the descriptor (Gell-Mann, 1997, 5). The descriptor must assume his

target user has some foundational knowledge embedded or accessible when interpreting

the KR or all descriptions would be of much greater length and therefore of higher

complexity. If this assumption was not made all descriptions would then be required to

contain everything about the world even if it was common knowledge within the domain.

Since common knowledge can be described as “I know what you know and you know

that I know you know”, I, the descriptor, can then make the assumption you know certain

“things” and allow you to expand the description with your common knowledge vice

explicitly restating what you already know in my description. In short, the property of

common knowledge, which will be explained in greater detail in a later section, allows

descriptors to compress their descriptions (Gell-Mann, 1997, 8).

To illustrate an example of this point a child’s description of an

ordinary triangle, would likely impose less complexity from its description than that of a

mathematician’s. As we would expect the child would rely on his experience and

5 This type of analysis can be applied to more sophisticated and different forms of complexity, such as
computational and effective complexity, to potentially discover additional associations. This however is
beyond the scope of this study, as the intent of this analysis is to deliver breadth of knowledge attribute
traceability without too much focus on a single one.

24

background knowledge about triangles to form the description. The descriptive method

applied by the child would likely be aspects of common knowledge to people of like

experience levels, and require little, if any additional background knowledge to interpret

the description. The child would likely describe the triangle by its physical properties

including color, size, number of sides, or at least in the most obvious terms.

Additionally, the description would likely be shorter than the mathematician’s in part due

to language choice. It should be evident the mathematician’s description of a triangle

will be at the other end of the spectrum from the child’s description and impose much

more complexity by the description, language, granularity and required background

knowledge to interpret and understand the description. This simple example illustrates

how the description of an object, the triangle, can become more complex than its original

state by the act of describing it in language. The process of describing domain concepts,

as in an ontology, with KR is equally susceptible to this problem.

b. Dispersed and Disorganized

(1) Knowledge Dispersion. The dispersion characteristic of

knowledge directly counters the ability of information systems to create an adequate

knowledge density from which to create new knowledge. Freidrich Hayek made the

observation that “…the knowledge of circumstances of which we make use never exists

in concentrated or integrated form, but solely as dispersed bits of incomplete and

frequently contradictory (consistency) knowledge which all the separate individuals

possess (Hayek, 1945, 519). Hayek was a prominent economist speaking about the

dispersed nature of the knowledge required to make economic decisions, but in general

his words resonate regarding knowledge usage for application to any problem space,

including the military domain (Schmitt, 1997, 232). The dispersed nature of knowledge

presents a formidable challenge for any potential knowledge user and provider. Hayek

suggests the restated problem to be a question of “… how to secure the best use of

resources known to any members of society, for ends whose relative importance only

these individuals know” (Hayek, 1945, 519) as the focal point for mitigating dispersion.

Hayek implies a form of recognition or self description assisting the user with more

precise searches (Davies, 2003, 3) to locate satisfactory content. This will enable the web

25

to aggregate large networks of machine interpretable human knowledge increasing the

ability to achieve an increased content density from which to construct knowledge as the

SWEB promises. In addition to Hayek’s observation about self description he also

implies a mechanism to “secure” or capture the resources required. The SWEB will

render the knowledge user the ability to acquire the content he is seeking by providing

layered interoperability amongst data and information sources and techniques for

establishing common meaning.

In the Information Age the dispersed aspect of knowledge has been

mitigated somewhat by the “connectedness” of the World Wide Web that effectively

establishes a highly accessible knowledge pipeline and storage system (Davenport, 2000,

18). People and organizations must make the choice to commit to contributing

represented knowledge to these potential vast stores in order to truly take advantage of

the “network effect” and exploit an improved knowledge density. Dispersion however,

will still exist in some form. To paraphrase Hayek’s words, “To assume all knowledge to

be given to a single mind is to assume the problem away and disregard everything that is

important and significant in the real world” (Hayek, 1937, 528). We must understand no

single mind, single network or single knowledge base can ever possess all knowledge,

therefore the best we can hope for is to have efficient knowledge discovery and effective

means to secure it. The knowledge is in the network, the SWEB must enable sufficient

representation and the ability for agents to capture and apply it.

(2) Knowledge Distribution. Consequently, as the knowledge

pipelines and storage systems are enabled by networks, the dispersion of knowledge

becomes less of a spatial or geographic problem and more of an issue of organization and

distribution. The uneven distribution of knowledge has been the subject of recent studies

focused on understanding how knowledge moves about an organization and the

peculiarities associated with its accumulation (Nissen, 2002, 251). Knowledge

distribution within a given organization finds some components of the organization

receiving a surplus of knowledge and others constantly in deficit (Davenport, 2000, 40).

The uneven distribution problem is termed asymmetry by Davenport and Prusak

(Davenport, 2000, 40-41) and certain amounts of it must exist for knowledge to be

26

valuable. Therefore, this property of asymmetry or scarcity is responsible for associating

value with knowledge in an organization. The more asymmetric the knowledge, the more

valuable it is as long as the required demand exists. Hayek’s observations regarding the

dispersed nature of knowledge suggest knowledge can be transferred to some degree.

Therefore if knowledge can be transferred to organizations requiring it, asymmetry can

be marginalized. The SWEB can provide the critical transfer vehicle, by applying the

idea of publication and subscription to required knowledge content. So, if nearly

unrestricted access to un-quantifiable amounts of web content exists and networks

connect more than ever before, why does this perceived scarcity still exist? Let us

examine how knowledge is distributed to determine a source of knowledge scarcity.

Maybe it is not scarcity at all.

(3) Data Overload. The knowledge scarcity existing in today’s

World Wide Web is not caused by a shortage of raw materials to generate knowledge; the

quantity of data available is at an all time high and growing, but the data is incapable of

communicating meaning without appropriate an KR language. There are currently

billions of web documents and databases accessible through the World Wide Web

(Davies, 2003, 1). So if the raw materials to generate knowledge are plentiful how can

knowledge be scarce? The perceived scarcity actually arises from the plentiful nature of

data, or the data glut as it is termed. Some refer to this data glut as “information

overload”, but as we shall further explain, it is really data overload ([2] Pohl, 2000, 3).

Figure 6 illustrates the data overload concept by highlighting the

correlation between the volume and value levels of unstructured data, structured data,

information and knowledge. As volume decreases the value increases as is consistent

with Davenport and Prusak’s observation that the more scarce an entity the more value it

has, providing the appropriate levels of demand (Davenport, 2001, 25). The roots of this

problem can be traced to the data centric purposes for which computers were designed

(Pohl, 2000, 5). Computers were designed to process data exclusively and were

sometimes referred to as data processing centers ([2] Pohl, 2000, 5), therefore does the

computer require redesigning to facilitate information or knowledge generation?

27

Today however, due to its recognized value, the proliferation and

widespread use of the Relational Data Base and to a lesser extent the Extensible Markup

Language (XML), illustrates an effort to bring a level of organization and structure to

data. Data’s inability to convey meaning ultimately fixes a maximum value level data

can attain as is consistent with Figure 6.

LOW VOLUME HIGH VALUE

LOW VALUE

LOW LEVEL DATA
(UNORGANIZED/

UNSTRUCTURED)

PURPOSEFUL
DATA

(ORGANIZED/
STRUCTURED)

INFORMATION
(RICH IN RELATIONS)

KNOWLEDGE
(INTERPRETATIONS/

RULES

HIGH VOLUME

Figure 6. Information Overload Myth (From: [2] Pohl, 2000, 4).

By acknowledging the existence of, and access to the raw material,

the shortage is narrowed to the conversion of these raw materials to knowledge. To

understand this concept we must differentiate between data and information. Next we

will introduce the traditional Knowledge Hierarchy to examine the processes required to

convert data to knowledge, demonstrating why data overload is occurring. The solution

to the data glut and knowledge scarcity lies in the ability to enable computers and

networks to assist with rapidly and efficiently converting this data glut into knowledge,

and then facilitating and managing the flow to ensure demands are met. The SWEB

offers a partial solution to this problem.

(4) Data. To make the distinction between data and

information we will perceive data as numbers and words without relationships (Pohl,

2000, 7). Bits and bytes stored in some raw state requiring additional processing to be of

28

utility to the decision maker. The processing required will be one which establishes some

level of relationships between the data items. Furthermore, data can relate very little

about its own meaning (Pohl, 2000, 6) and relies on mappings to a model, or series of

models, with respect to the intended meaning and relationships for interpretation (Orbst,

2003, 105). These models alluded to are the ontologies, one of the core technologies in

representing knowledge within the SWEB, which we have yet to discuss. As Davenport

and Prusak further explain, “There is no inherent meaning in data.” “Data describes only

a part of what happened; it provides no judgment or interpretation and no sustainable

basis for action” (Davenport, 2000, 3). Interpretation is the value added process as

interpretation is where the relationships are developed. Therefore, Data + Interpretation

= (Something of Value), where interpretation is a process establishing the required

relationships adding more value. With proper interpretation an organization or individual

can use the data as it was intended.

Data, in addition to being voluminous can also be unstructured.

This absence of structure introduces a new set of problems the SWEB must contend with

to build its knowledge foundation. Unstructured data is very difficult to manage and

because of its unstructured nature, has little value6 (Pohl, 2000, 6). Too much data

creates the glut, and if the data is unstructured its utility can be marginalized. The

marginalized utility of data makes it extremely difficult and time consuming to identify

and interpret the data of value to a particular application (Davenport, 2000, 3). Structure

however, can be imposed on data through data models, database management systems,

schemas, the Extensible Markup Language (XML) and ontologies. These technologies

will provide the required structural foundation for the SWEB, and will be elaborated on

in the Data Sources Chapter. More specifically, we discuss the concept of structuring

data and further develop the concept in terms of Relational and XML Databases. But

according to Obrst, “Structure itself, though important is not the crucial determining or

characteristic factor for the continuum: interpretation is.” “Structure is just a side effect

for the degree of interpretation required” (Obrst, 2003 104). Refer to Figure 7 for a

6 We would submit data has little value in the context of automated, programmatic manipulation and

interpretation. More specifically, software agents and reasoning engines would not be able to interpret.

29

graphic representation. To review, we have identified interpretation as the key to data

utility and therefore value. Let us continue our analysis to discover the source of

interpretation.

Data
Relatively

Unstructured Interpretation
Continuum

Knowledge
Very

Structured
Lowest
Value

Highest
Value

Figure 7. Interpretation Continuum (After: Obrst, 2003, 105).

(5) Information. Information is meant to change the way an

entity perceives something through an impact on his behavior or judgment (Davenport,

2000, 3). Davenport and Prusak credit information with ‘giving shape’ and directing a

manner of perception to the interpreter. This “shape” levied by information combined

with what the interpreter already knows, or at least has access to, creates actionable “new

knowledge” (Obrst, 2003, 105). The “shape” provided by information enables

interpretation. Interpretation establishes the missing relationships between data items

creating utility, value and meaning. The role of interpretation becomes the mapping

between a subset of data and a model of some set of objects in the domain with respect to

the intended meaning of these objects and the relationships between the objects (Obrst,

2003, 105). Therefore, all of these items must combine in a process to create new

knowledge. A key point embedded within this process is that in order to create “new

knowledge” an organization or individual must already be in possession of some quantity

of background knowledge. Without old knowledge, new knowledge cannot be generated

(Obrst, 2003, 105). Additionally, to employ knowledge in any usable way an agent

(human/software/machine) must possess access to the prerequisite background

knowledge or intellect required to interpret the knowledge for a specific problem (Obrst,

2003, 105). This idea is captured by the refinement of the equations presented above.

We now have the required background to understand what Obrst, Davenport, Prusak, and

Pohl mean when they refer to knowledge.

30

(6) Knowledge Equation Refined. We understand Data +

Interpretation = (Something of Value). We can now substitute knowledge for Something

of Value, changing the equation to read Data + Interpretation = Knowledge. The

equation can be manipulated to show Knowledge – Interpretation = Data. Furthermore,

Interpretation = Relationships communicated by Information; therefore, the degree of

interpretation is a function of the relationships established by receipt of new information

combined with the knowledge we already know. Therefore, we can again restate the

equation to read New Knowledge = Old Knowledge + Information7. With this we have

navigated the knowledge generation process and understand how data, information and

knowledge are related and differentiated. Interpretation emerged as the critical

component of both knowledge generation and employment.

Thus far we can conclude the current knowledge generation

process is unable to efficiently produce knowledge due to the inability to interpret the

vast stores of data. The end result is the perceived scarcity of knowledge and a glut of

data. The SWEB will focus its efforts enabling this interpretation by leveraging

technologies to describe machine interpretable content through knowledge representation

(See Figure 8).

Mapping

R
esources

Threat

O
rders

Policies

SO
P

s

C
am

paign Plan

C
apbilities

M
ission

M
essages

Highly
Structured

Environment

Information Management System

Highly
Unstructured
Environment

Input

New
Knowledge

Information
(Interpretation)

Understanding

Data

Actionable
Old

Knowledge
+

=

Domain Model

Figure 8. Knowledge Hierarchy (After: Chorfas, 2002).

7 The knowledge equations and their various forms were reproduced from (Orbst, 2003, 105).

31

(7) Distribution. To correct the uneven distributions caused by

the dispersed nature of knowledge, one must focus on how content flows within today’s

vast networks. Knowledge can be viewed in the System Dynamic perspective as either a

stock (storage receptacle), or a flow (the moving content of a pipeline). To monitor the

status of both stock levels and flow rates SWEB technologies can be implemented to

track stock levels, look for shortages and connect with potential sources. In practice this

works, but what if we wanted to allow knowledge to flow in from an external source

outside our enterprise? As long as we were using the same data structures, had the same

meaning for terms, and had exactly the same business process it may be effective. But,

as is more commonly the case an interoperability problem will inhibit us from connecting

our knowledge flows and sharing the contents of our knowledge stocks. Today there are

many more technologies, tools and techniques improving this problem immensely from

where it was a few years ago, but we are no where near what the SWEB promises, the

promise of transparent interoperability.

(8) Knowledge Embeds. As is the case with reality, there is

never a clear cut logical classification for anything (Sowa, 2000, 356). It would be

simple if were classified as either a stock or flow, but knowledge embeds in routines,

processes, practices and norms (Davenport, 2000, 5). Often knowledge embedded in

such fluid aspects of an organization can be invisible to the organization (Housel, 2001,

9). Invisible can be equated to undiscovered knowledge, and if knowledge is

undiscovered it cannot be represented. The knowledge acquisition efforts must be

rigorous enough to expose invisible knowledge to an organization to fully take advantage

of the value added of the SWEB. If knowledge acquisition methodologies remain

undeveloped or are not followed, the SWEB could be perceived as not returning value to

such organization. Knowledge must be represented in machine interpretable form for it

to be leveraged. As such, due to the nature of this property of knowledge the SWEB

must provide the flexibility and expressiveness in its knowledge representation languages

to describe these forms of knowledge as well as provide rigorous knowledge acquisition

32

methodologies. The knowledge acquisition methodologies must be simple to use yet

robust enough to discover invisible knowledge embedded within a process, norm,

practice or routine.

(9) Knowledge is Dynamic. The dynamic nature of knowledge

or its ability to change will also provide implementation challenges for the SWEB.

Ontologies developed today may require a complete overhaul tomorrow. Therefore, the

SWEB and its supporting technologies must be able to adapt to change by incorporating

modular and extendible design patterns. These design patterns must be modular in nature

and loosely coupled, with a clear separation of concerns to guarantee such. Many of the

design patterns and considerations can be borrowed from Object Oriented Programming

(OOP) and adapted for the knowledge handling mechanisms of the SWEB. Since the

representation, storage, or acquisition of knowledge is never the end goal of a SWEB

application, adopting the design patterns of OOP is a logical step since OOP applications

will likely be interfacing and ultimately apply the knowledge objects the SWEB will be

enabling.

C. COMMON AND DISTRIBUTED KNOWLEDGE (Ф)

Our analysis from above has left us with a long list of knowledge characteristics

that through our meaning triangle have become references to the concept of knowledge.

Just as there are many characteristics helping to ground the concept of knowledge within

our conceptual framework there are also different knowledge types that inherit these

characteristics. Two of these knowledge types the SWEB will rely on are the concepts of

common and distributed knowledge. While common and distributed knowledge are

subclasses of knowledge they have their own unique properties. Common and distributed

knowledge manifest themselves as useful leverage points to mitigate complexity and

foster an understanding of complex situations in involving members of a group or domain

(Fagin, 1995, 3)

1. Common Knowledge
Common Knowledge (Cф) is “what any fool knows” (Fagin, 1995, 34). More

formally, it can be expressed as the mutual knowledge among a set of agents

33

(Vanderschraaf, 2002). When we make the assumption about the existence of some

quantity of Cф within a domain, we can leverage the fact all members of the domain

“know” the propositions contained within Cф. Because of this those propositions can be

intentionally omitted from the Knowledge Representation products subscribed to by the

domain. Recalling our earlier analysis of crude complexity the result of this assumption

is an elimination of the complexity caused by restating such propositions already

contained in Cф in the knowledge representation. As we might infer because of these

omissions the length of the descriptions are shorter. We can also claim because Cф exists

within a group or domain (G), its subgroups also possess Cф (Fagin, 1995, 34). This is

mathematically expressed as C GGG ф → C GGG ′′′ ф, if G′ is a subgroup of G. This claim supports

the concept of inheritance by subordinate classes

To legally declare the existence of Cф we must be able to assert all members of G

know ф is true and is common knowledge among the group. To restate, we must be able

to declare with confidence that “I know that you know, and you know that I know a

certain domain proposition to be true.”

Within the Military domain there are many forms of Cф we can assert with

relative confidence due to our common experience, training, and operating environment.

Even across the services a certain amount of Cф can be asserted, determined by our

common military culture. As a result, when representing knowledge within the military

domain, careful analysis should be done to identify the amount and type of Cф a user

group possesses in order to maximize the reduction of complexity and still achieve a

common meaning.

2. Distributed Knowledge
Distributed Knowledge (Dф) can be viewed as what a “wise man would know”

(Fagin, 1995, 36). More formally stated Dф is ability of agents to pool their knowledge

toward some problem space (Fagin, 1995, 24). Therefore if two agents combined their

knowledge they could only attain ф, assuming ф was divided and distributed among the

two agents and no single agent individually knows ф (Fagin, 1995, 3). One might

34

conclude if one cannot gain new knowledge from the existence of Dф why should we

concern ourselves with it? As it turns out Dф allows us to deduce facts within a domain

as we shall demonstrate with an example (Fagin, 1995, 3).

3. Common and Distributed Knowledge Combined
To illustrate the usefulness of Cф and Dф within the military domain consider an

array of sensors deployed from the Remotely Monitored Battlefield Sensor System

(REMBASS). The REMBSASS system is a tactical system consisting of seismic (Ss),

acoustic (Sa), and magnetic (Sm) sensors. The sensors are designed only to determine

the presence of an object based on its respective detection capabilities. In addition to

presence, the sensor can also classify the detection in a low, medium or high category

based on the strength of the detection compared to predetermined baseline thresholds.

Suppose an independent intelligence report is received by a group of analysts

responsible for interpreting our sensor array’s data. The report states there are T-72

Tanks and infantry units in the Area of Responsibility (AOR). All of the analysts believe

this report, as it originated from a credible source. That assertion about the presence of

tanks and infantry units within the AOR can now becomes Common Knowledge among

the group of analysts as long as all members of the group know that all members of the

group believes and knows this information. Suppose Ss detects a ground vibration

classified as high, and Sa detects an acoustic event classified as high, and Sm detects the

presence of metal classified as high. These facts taken collectively and combined with

the Common Knowledge of the group can lead to the conclusion the sensors have

detected at least one T-72 tank. The sensor data taken individually would be incapable of

forming this conclusion, as they would only be able to assert the facts within their

detection capabilities. The combination of Common and Distributed Knowledge is where

we acquire leverage.

Additionally, because of the high classification of the metal and seismic

detections the analysts are able to exclude the presence of infantry units only. The

analysts cannot however conclude that there is not Infantry Units accompanying the

35

tanks, as the detection of the tanks overpowers the signature of the infantry units. Notice

how Common Knowledge was combined with Distributed Knowledge leading to some

very useful conclusions that otherwise would not have been possible.

D. KNOWLEDGE MANAGEMENT LIFECYCLE

Thus far we have formed a common meaning of the role knowledge will play and

what it means in the context of the SWEB. From our analysis it is clear a common

process must be established to manage the knowledge lifecycle (See Figure 9). Many

different knowledge management lifecycles exist most of which are strikingly similar.

The Knowledge Management Lifecycles synthesized by Nissen from a variety of sources

(Nissen, 2002, 255) all seem to generally agree in concept and differ only in terminology.

To emphasize the importance of a standard management methodology we will analyze

our proposed methodology in detail by phase throughout our work. By addressing the

necessity of a Knowledge Management Lifecycle in the knowledge section we hope to

expose the reader to this very important concept to heighten awareness as we present

more detailed analysis.

Discovery StoreGeneration UsageTransfer Maintain/
Evaluate

Reuse

Figure 9. Process for Managing Knowledge Lifecycle (After: Nissen, 2002, 255).

E. SUMMARY
Military users will soon be able to take advantage of the SWEB as it endeavors to

harness the power of knowledge by introducing techniques to construct knowledge from

enabled network content and represent it in a manner interpretable by computers. In an

attempt to summarize the importance of the promise of being able to construct knowledge

from available network content, the foundation of the SWEB, we will examine some of

the interactions of the characteristics of knowledge we have previously analyzed to show

36

when taken as a system other behaviors emerge. The Causal Loop Diagram (CLD)

(Figure 10) demonstrates these facts and is a useful analytical tool established by the

Systems Dynamics community. The below section is written to be used in conjunction

with the CLD depicted below. We recommend the reader follow along with the diagram

as the description is read to receive the full benefit of this summary

1. Causal Loop Diagram
The knowledge construction process enabled by the SWEB will create new

knowledge from existing foundational knowledge by combining it with the appropriate

interpretation. The new knowledge will then be transferred to the intended users, but by

its nature will be dispersed creating shortages and surpluses varying the amount of

knowledge able to be constructed or knowledge density. The improper distributions and

resultant shortages and surpluses will drive up demand for knowledge, thus increasing its

value creating a positive feedback loop. The natural dispersion of knowledge will allow

only modest gains to be achieved in knowledge density and knowledge yield. The result

will still be and increased net decision rate, but only of modest gains. The true value

added of the SWEB will be the construction of knowledge by aggregating enabled

network content, mitigating dispersion and ensuring the constructed knowledge is

properly distributed resulting in the right knowledge to the right place at the right time. If

this is accomplished knowledge density will remain high, as well as knowledge yield,

allowing greater increases to be realized in the net decision rate. To accomplish these

daunting tasks users must have a thorough understanding of the complexities of

constructing knowledge and its characteristics, as this is the foundation on which the

SWEB will be built. This will be a critical enabler toward helping to mitigate the

uncertainty of warfare and allowing the military to achieve the goal of becoming a

fighting force based on knowledge.

37

Time

Relevancy

Foundational
Knowledge

-

-

New Knowledge
+

Transfer
Rate

+

Dispersion

+

Distribution

-

Demand
+ Knowledge

Density

-

Value

+

+

+
+

Interpretation

Data
Information

Sources

+ +
+

+ +

+

+

+
Knowledge

Yield

Net
Decision

Rate
+

Figure 10. SWEB Causal Loop Diagram.

38

THIS PAGE INTENTIONALLY LEFT BLANK

39

III. NETWORK DATA SOURCES: BUILDING BLOCKS OF
KNOWLEDGE

A. DATA SOURCES: THE BUILDING BLOCKS OF KNOWLEDGE
This chapter serves to underscore the importance of data sources residing on a

network to the Semantic Web’s (SWEB) knowledge generation process. We discuss

various types of data sources likely encountered and methods to successfully enable

them. The more we understand about a data source the more informed decision we can

make as to whether or not to put forth the effort to incorporate it into our application.

Key points to take from this chapter include the implications of structured data, and how

the Extensible Markup Language (XML)8 relates to different database models. Notably,

data may be described as the atomic element of knowledge; how we structure and store

data is foundational to creating semantically represented, machine-readable information.

The proliferation of the World Wide Web (WWW) has lessened the requirement

for systems and users to store, maintain and own the data driving their information and

knowledge systems. Today the WWW affords us the luxury of connecting to the expert’s

data sources to support our applications. In the military we may connect to a weather

data source owned and maintained by weather experts and Order of Battle (OOB) data

sources owned and maintained by the intelligence agencies. This data is directly from the

experts and adds tremendous value to the effectiveness and efficiency of our data driven

applications supporting military operations. One down side is that there is more data

populating the WWW than can presently be efficiently and effectively used.

Another drawback, or limitation, is the fact that the network is not (completely)

reliable.9 Consequently, our generic SWEB architecture prescribes a local mirror, or

cache, of the network data sources comprising our application. The employment of a

caching mechanism serves as a temporary buffer mitigating adverse effects resulting

from network disruptions. For example, loss of a networked data source could preclude

processing some function within our application. Storing the incoming data in a local

8 This paper assumes a basic working knowledge of XML. Many sources are available to learn XML
including [http://www.w3c.org/xml].

9 In fact, as we observe in the Distributed Computing chapter, the idea that the network is reliable
leads to a fundamental design error in traditional networking applications.

40

cache allows us to continue processing for a finite period before the data value perishes.

The mitigating effect of the locally caching data sources will vary proportionately with

the time-value of the data. Although not a perfect solution a local mirror of our data

sources does benefit the overall application.

As we will see in later chapters, the ability to leverage network data sources is

critical to the wide spread adoption of the SWEB. Unfortunately, the extent to which we

can interact with another agency’s data source is a function of what we know about the

data source. To more effectively and seamlessly use a network data source machines or

software agents must know its structure, content, format, and how the data should be

interpreted or its meaning. Without this knowledge the probability of effectively

incorporating the remote data source into our own program is low. So what mechanisms

can we implement to allow potential data users to fully exploit the data source(s)? The

answer resides in common meaning, knowledge representation, and XML; all of which

are part of the SWEB.

To incorporate a network data source we must first discover it. After discovery

we must put forth the effort to enable it to meet our needs. To do this we must analyze

the data’s requisite structure, or lack thereof. Data can be classified into three general

forms: structured, semi-structured and unstructured. Fortunately, we can impose

structure at several different sublevels in the data source depending on the shortcomings

of the data. The leverage points we can activate include the schema, data model, data type

or on the literals themselves. We will now elaborate on each of these data classifications

and further discuss the potential leverage points.

1. Unstructured Data Source
Unstructured Data can take considerable effort to transform into a workable

format and even with a massive effort there is no guarantee the source may be adapted.

Unstructured data assumes no recognizable or intelligible form to the interpreter. In

some cases the data source may in fact be structured, but the interpretation instructions

are missing, in which case the data is of no use. Recently, the likelihood for encountering

purely unstructured data on the WWW has drastically decreased as enterprises have come

41

to recognize the value of their data, and have applied great efforts to make their data

usable by bringing structure to it. Therefore, missing interpretation instructions are the

most probable cause for data to be classified as unstructured.

An example of unstructured data may be a memo or letter. While an implicit

structure may be inferred by a human, machine processing and interpretation is

essentially limited to string matching. This situation requires the human to remain in a

critical position within the process.

2. Semi-Structured Data
Data in a semi-structured form can in some aspects be just as challenging as

unstructured, but generally provides enough structure to enable at least a partial

transformation. Therefore, if the data source lacks the necessary structure, we must have

the ability to impose the structure we require for application to make the source work for

us.

An example of a semi-structured data source might include an Over-the-Horizon

(OTH) report message, as illustrated in Figure 11. A specification may define a format

and structure for this message. However, the resulting text document is still only

partially structured. Accordingly, although machine processing is more plausible, it is

limited as rigorous semantics are not thoroughly applied. Specifically, the use of slashes

to separate data elements does nothing to provide semantics. As well, machine

processing is made more difficult because slashes may in fact be data elements.

Figure 11. Semi-Structured OTH Message.

ZNR UUUUU
O 010011Z JUN 03
FM SCENARIO INPUTS
TO JMCIS
BT
UNCLASS
MSGID/JWID 00 SITES/JUNIT/0001/JUN
JUNIT/T0001/8110thHomelandDefense/ENEMY/UNK/ARM//////RPT000012001/3/
JPOS/010011Z3/JUN/33.3786N/-116.6728W/OTHER
ENDAT/OADR

NNNN

42

3. Structured Data Source
In general, the more structured the data source, the more susceptible it will be to

manipulations to support a knowledge generation process. A data source classified as

structured implies knowledge of the underlying data model or schema. The presence of

such provides a metadata source, or data about data, allowing insight into the storage

structure, cardinality and data types contained within. A formal schema does not

exclusively classify the data source as structured, but without one structure is more

difficult to determine.

An alternative to the presence of a formal schema is the implicit structure of the

data elements themselves. Often times the data elements can be stored in a recurring,

easily recognizable format such as a specific format of a message presenting an informal

or unwritten schema by which to determine structure. The presence of such structure

embedded in the data elements also classifies a data source as structured.

As we will see, even within structured data we can achieve varying “degrees of

structure.” For example, a basic XML document essentially provides only terms and

their associated values, along with hierarchy; whereas, derivative technologies10

additionally provide classification and logic. Specifically, the Ontology Web Language

abstracts description logic and provides classifications of relevant concepts in a domain.

This technology will be expounded upon somewhat in this chapter, and in detail in the

Ontology chapter.

The OTH message we mentioned earlier as an example of a semi-structured data

source may be formatted as a well-formed XML document as seen in Figure 12. The

XML document elements indicate applicable terms (semantics) relating to an OTH

message and the element contents. A casual review of the XML formatted message

reveals s a much greater understanding of the OTH message. Modeling our data source

in a highly structured, semantic manner will significantly facilitate automated processing

of the contained data.

10 By “derivative technologies” we mean technologies that are XML at there basic level. That is, they
adhere to the basic XML specification.

43

Figure 12. XML Formatted OTH Message.

<othGold xmlns:xsi=“http://www.w3.org/2001/XMLSchema-instance”
xsi:noNamespaceSchemaLocation=“C:\Thesis\Application\oth_gold_schema.xsd”>
 <messageHeader>
 <startOfMessageSequence>ZNR UUUUU</startOfMessageSequence>
 <messageDate>O 010011Z JUN 03</messageDate>
 <messageOriginator>SCENARIO INPUTS</messageOriginator>
 <messageRecipient>JMCIS</messageRecipient>
 <startOfTextIndicator>BT</startOfTextIndicator>
 <messageClassification>UNCLASS</messageClassification>
 </messageHeader>
 <messageIdentification>
 <messageOriginator>JWID 00 SITES</messageOriginator>
 <messageIdentifier>JUNIT</messageIdentifier>
 <messageSerialNumber>0001</messageSerialNumber>
 <month>JUN</month>
 <operationOrExerciseName>TEST</operationOrExerciseName>
 <qualifier>AMPJWID 00 SITES</qualifier>
 <qualifierSerialNumber>999</qualifierSerialNumber>
 </messageIdentification>
 <jointUnit>
 <trackNumber>T0001</trackNumber>
 <name>8110thHomelandDefense</name>
 <organizationType>ENEMY</organizationType>
 <echelon>UNK</echelon>
 <service>ARM</service>
 <platform>ACFT</platform>
 <flag>AF</flag>
 <forceCode>00</forceCode>
 <alertCode>TGT</alertCode>
 <embark>String</embark>
 <uniqueIdentifier>RPT000012001</uniqueIdentifier>
 <trackType>13</trackType>
 <suspicionCode>01</suspicionCode>
 <emitterVoiceCallsign>BEAKER</emitterVoiceCallsign>
 </jointUnit>
 <jointUnitPosition>
 <dateTimeGroup>000000Z0010011Z3</dateTimeGroup>
 <month>JUN</month>
 <latitudeOfCenter>33.3786N</latitudeOfCenter>
 <longitudeOfCenter>116.6728W</longitudeOfCenter>
 <sensorCode>OTHER</sensorCode>
 <bearingOfMajorAxis>000.0</bearingOfMajorAxis>
 <lengthOfSemiMajorAxis>0NM</lengthOfSemiMajorAxis>
 <lengthOfSemiMinorAxis>0NM</lengthOfSemiMinorAxis>
 <course>33.3786N</course>
 <speed>0.0K</speed>
 <rdfRF>0.0HZ</rdfRF>
 <sourceCode>ACTFIX</sourceCode>
 </jointUnitPosition>
 <messageFooter>
 <endOfTextIndicator>OADR</endOfTextIndicator>
 <endOfMessageSequence>NNNN</endOfMessageSequence>
 </messageFooter>
</othGold>

44

Structuring data has long been fundamental to automation and computing. Data

based computing has implemented innumerable models and techniques for describing and

storing data. However, throughout the progression of data based computing there have

been at least four constants concerning data:

• Data must be stored somewhere, and it must be retrievable

• Data must be presented in some useful manner

• Data must be accessed, manipulated and transformed from its storage state
and location to its consumption state and location.

• The previous must not only work well at each stage, but also remain
flexible.

These constants say nothing about the actual data or any possible internal

relationships; it is assumed they will be captured. Instead they refer more to the

environment the data exists in and operates to form a viable solution to a problem.

(Williams, 2002, 10)

Indeed, it is the need to acquire knowledge to solve problems that serves as the

impetus for seeking data and its subsequent meaning. The premise that structured data is

necessary to the construction of knowledge leads us to the need to select a data-

structuring mechanism. XML provides a well-suited means to structure data, and

moreover, to help represent knowledge. Although other mechanisms are possible, XML

is by far the most commonly implemented, open-standard language for structuring data.

This is at least partly because XML may be readily implemented to support a host of

different applications. Additionally, extensibility is the core attribute of XML, and it

presents a highly flexible structure. By flexible, we mean that it may be strictly

structured as required for a particular application, yet completely transformable to satisfy

other uses. Because of the importance of data in computing applications and the utility of

XML for structuring data, this chapter discusses aspects of enabling data sources using

XML as an interim step prior to formal Knowledge Representation.11 It describes

approaches to data storage and manipulation using relational models, XML, and a hybrid

of both. Additionally, we highlight the concept of native XML databases as an option for

11 It is important to understand that “plain” XML will likely not be the method used to represent

knowledge; instead, some derivative of XML will be implemented, such as Ontology Web Language
(OWL) – which will be discussed in this paper.

45

semantically-enabled data sources. We understand SWEB applications will employ a

combination of both relational and XML data sources to support reasoning through an

ontology. It is important the reader keeps this chapter in the context of how data sources

are used to support the knowledge based applications of the SWEB.

While XML is a solution for data structure and interoperability, relational

databases have enjoyed a very successful history that will likely continue into the future.

Presently they remain the predominant method for data based solutions such as:

• Support for thousands of concurrent users

• Store terabytes of data; of any data type (including XML)

• Support relational and analytical data models

• Provide for ad hoc, flexible queries of the data

• Feature authentication and authorization security mechanisms

• Allow for programming within the database

In addition to these characteristics, relational databases also provide network

connectivity to applications and other databases, and tools to develop, manage, and report

on enormous amounts of data.

Since relational databases outperform other solutions on the four constants

described earlier, there is no compelling reason to discontinue implementing them

(Williams, 2002, 11). In fact, SWEB applications will implement relational data bases to

support, and even function as part of the Knowledge Base. Relational databases and

Native XML Databases will combine to form a Hybrid Data/Knowledge Model to drive

the applications of the SWEB. See Figure 13.

46

Relational
DB

Knowledge
Base

Pure Data Model
(interpretation static)

Pure Knowledge Model
(interpretation dynamic)

Information Space

Hybrid Data +
Knowledge Model

(interpretation static)

Balance Area

 (Sweet Spot)

Figure 13. Hybrid Data/Knowledge Model (After: Smart, 2003).

In practice, data storage remains critical to computer applications. Further, data-

driven web applications are essentially the current focus of development. SWEB

applications are still in the research and academic stage; however, if the level of effort is

an indicator, deployments of fully functional SWEB applications will be realized very

soon.

The web has vastly expanded the amount of data shared by users. Protocols such

as HTTP have provided simple and ubiquitous transport platforms to interconnect

applications. Data driven sites have made the commercial web. Typical sites feature

data-enabled applications allowing manipulation and presentation of data stored in

databases. The browser-centric web has enabled application-agnostic interoperability

wherein the user is largely relieved from the burden of maintaining compatibility with the

server application(s). Processing of data for HTML presentation may be performed

within the database or inside an application server resident on a web server, and

propagated between client and server over (ubiquitous) HTTP. The loosely coupled,

highly interoperable architecture essentially extends the web audience to global

proportions and is largely software independent. Despite this great success, HTML is not

optimal. Most content produced or residing on the web of today is intended for human

consumption. Fortunately, HTML data may be classified as semi-structured and may be

enabled for inclusion in a knowledge generation process. That said, most of the content

47

on computers and in databases today essentially lay dormant, awaiting use. Imposing the

structure provided by XML, the audience of applications can be vastly expanded for

consumption by humans and machines.

XML is the foundation for the common language of conversation across the web

and across platforms connected to the web. As we will see, XML representation and

storage will substantially enhance interoperability, allowing loose coupling of disparate

systems, such as Service and Combined systems. Semantic representation of data using

the Web Ontology Language (OWL) built in XML’s foundation empowers computers

and software agents to interpret resident semantically enabled data. OWL will provide

the format, structure and logic for sharing and reusing data across the SWEB and will

result in self-describing data for software agents to use in myriad applications.12

Increased implementation of OWL, XML and derivative technologies will necessitate

new storage requirements and opportunities for innovative storage techniques. This leads

to an intersection between burgeoning XML centric storage and applications and the

proven relational databases.

B. XML AND DATABASES

Despite the proliferation of advanced technologies, legacy systems will continue

to exist13. Additionally, the need to connect and communicate with extant systems will

remain. The utility of XML as a key interoperability enabler is realized through its

ability to allow communication between disparate systems. In addition to communicating

between otherwise incompatible systems, legacy systems retain the requirement to

operate within the context of their native models (e.g., relational databases). As we

discuss further in the Knowledge Base Chapter, the applications of the SWEB will not be

required to own the data sources driving them. The sources will exist in their native

models and permit outputs exposed in structured formats such as XML, allowing simple

migration to a host of other formats. A typical enterprise computing system would likely

follow this pattern. Enterprise computing systems consists of multiple applications

connected to one or more data sources. Not all of these applications will readily support

12 The Ontologies chapter discusses OWL in detail.
13 XML and Java, as we will see later, may obviate the notion of “legacy” systems.

48

XML, nor would they necessarily need to communicate in XML. As we stated above the

data source or its output may simply be exposed as XML while retaining its native model

(See Figure 14). Once the data is represented as structured XML, it may be readily

communicated and shared across heterogeneous networks, platforms, and programming

languages.

Implementing a database as a primary storage repository for XML documents

ensures legacy applications can coexist with new XML-based applications. In fact,

making data available in both XML and traditional forms essentially eliminates

interoperability issues. The underlying model, or structure of the data may remain

unaltered, and adding an XML view of the data, which may be modeled similarly or

completely different, will have no effect on the on the relational [legacy] construct.

Additionally, the data structure may change and will not necessitate a change in the

exposed XML structure. Exposing relational data as XML can also serve to ease

migration to XML. (Ahmed, 2001, 696-9)

Internet Information
Server

CTRL_FEAT
ctrl_feat_id
route_id [FK]
ctrl_feat_name
ctrl_feat_cat_code
ctrl_feat_type
lat_coord
long_coord
lat_long_precision_code

GEO_FEAT
geo_feat_id
geo_feat_name
geo_feat_type
lat_coord
long_coord
lat_long_precision_code
elevation
elevation_precision_code

ROUTE
route_id
route_name
route_direction_code
route_mobility_code

ROUTE_GEO_FEAT [As]
route_id [FK]
geo_feat_id [FK]

Contains

Associated
by

Contains
Part of

Described in

Belong
in

XML Applications

Legacy
Applications

Traditional View
of Data

HTML PDF XML

XML

SQLXML

XSL

OWL

SQL Server

Figure 14. Relational Database Exposed as XML.

49

XML will never replace [relational] databases, but the two will become more

closely integrated with time. (Hunter, 2001, 492) However, storage and manipulation of

XML will be a necessary requirement for future database technologies. While

proprietary storage formats may endure for the sake of performance, many data

exchanges between applications and systems will use XML.14 (Birbeck, 2001, 39) To be

sure, many applications already use XML for data exchange, and the numbers of XML

implementers continue to grow. As for existing (relational) database technologies,

performance, maturity and flexibility is inherently a prime motivation for retaining this

technology. Using a relational database for storing XML documents allows users to

benefit from these investments. XML, on the other hand, offers the advantage of

portability and flexibility.

There are alternative and stop-gap methods to introduce XML into relational

databases. One method is to store XML documents as single binary or character objects

without decomposing the document. The benefits of this method include document level

control, and stability. However, querying below the document level is not possible.

Accordingly, this storage method would necessitate additional processing to enable the

storage of KR formatted data. This is a situation wherein the data is structured, yet not

actually enabled.

The other method is to deconstruct the XML document into a form the database

can understand. This allows for the best use of the XML document. The data within the

document, persisted in a relational model, is more readily accessible by agents who can

execute a variety of query languages on the data (e.g., SQL, Xpath). To accomplish this

method, a mapping between XML elements and attributes to table columns must be

developed. This provides the database access to the document elements and attributes,

along with their corresponding contents. This approach is particularly suitable to data-

centric XML documents where the structure is highly regular. This technique also has

the desirable effect of closely positioning XML to the relational database. Why is this

14 XML will likely work its way deeper into application development. Instead of only using XML to

interoperate between systems, applications themselves will be developed using XML technologies to
further enhance interoperability.

50

desirable? The answer lies in speed and agility. The “sooner” the data is structured as

XML or one of its derivatives, the “sooner” it is completely interoperable with the KR of

the knowledge generation process. The sooner data is semantically represented the

sooner it is available for software interpretation.

The notion of legacy systems is further reduced as a design consideration or

concern by interoperability at the data layer essentially obviating the need for elaborate

interfaces between dissimilar systems. The implementation of an XML derivative

technology called Simple Object Access Protocol (SOAP) has facilitated interoperability

between different programming languages, such as Java and C++. By modeling data in a

structured, textual format such as XML, dissimilar programming languages can readily

parse and process the exchange the data. An instantiation of this is seen in the

application area of Web Services.

Web services are precisely about interoperability and machine interpretation of

KR enabled data. Web services implementing XML derivative technologies such as

SOAP and Web Services Description Language (WSDL) produce loosely-coupled,

highly-interoperable frameworks. In essence, web services represent distributed

application computing across heterogeneous platforms.15

In addition to interoperability, exposing relational data as XML supports (web)

application development by supporting separation of content and business logic from

presentation. A common paradigm describing this notion is the Model-View-Controller

(MVC) paradigm. The “Model” represents the structure of the data; the “View” is the

presentation of the data; and the “Controller” is the business logic, and the logic that

controls interaction between the model and the presentation. XML documents are readily

transformed to various presentational formats by use of Extensible Stylesheet Language

(XSL). For example, relational data structured as XML can be transformed by XSL into

HTML or a number of other formats such as PDF, Scalable Vector Graphic (SVG),

Extensible Three-dimensional Document (X3D) for rendering in a browser; or to OWL,

which is of primary concern in the knowledge generation process and machine

15 Various technologies such as CORBA, DCOM, RMI, and Jini enabled distributed computing;

however, web services based on SOAP provide platform-agnostic, open-standards based distributed
computing solutions. Distributed computing will be further discussed in Chapter III.

51

interpretability. Next, we discuss an XML-driven application that exposes relational data

as XML and supports the notion of “separation of concerns.” It is called the “Route”

application as it contains data that may be used to describe a path from an origin to a

destination. Briefly, it is an example of mapping a relational database model to XML,

and rendering the produced XML in a variety of presentation formats, including HTML,

PDF, and “plain” XML.

1. XML Driven Route Application
The Route application is loosely associated to a standardized NATO developed

data model. It is called the Route Application as it is intended to describe the basic

components making a military route. The routes in this application may include many

control features, such as route entry points, way points, and exit points, etc. Numerous

other control features are available and are explicitly defined and limited by the

application schema. The application schema in this case consists of both the XML

Schema16 that constrains XML content and the Structured Query Language (SQL) Data

Definition Language (DDL) schema that constrains the relational data. Additionally, a

route may include many geographic features such as lakes, beaches, and mountains;

geographic features are similarly limited by the schemas. As indicated by the entity-

relation diagram in Figure 15, geographic features may belong to more than one route;

whereas, a given control feature belongs to only one route. The significance of this

model is the deconstruction/construction of XML to/from a relational database. It is not

necessarily intended to precisely depict an operational model of a route. It is, however, a

concrete instance of mapping XML to and from a (legacy) relational database.

16 Our experience with XML development, even though fairly limited, has re-enforced time and again

the importance of developing the data schema(s) early in the application development lifecycle.

52

CTRL_FEAT
ctrl_feat_id
route_id [FK]
ctrl_feat_name
ctrl_feat_cat_code
ctrl_feat_type
lat_coord
long_coord
lat_long_precision_code

GEO_FEAT
geo_feat_id
geo_feat_name
geo_feat_type
lat_coord
long_coord
lat_long_precision_code
elevation
elevation_precision_code

ROUTE
route_id
route_name
route_direction_code
route_mobility_code

ROUTE_GEO_FEAT [As]
route_id [FK]
geo_feat_id [FK]

Contains

Associated
by

Contains
Part of

Described in

Belong
in

Figure 15. Route Entity-Relation Diagram.

The implementation of the (relational) data model is a SQL Server 2000 relational

database. The data model consists of four entities, or tables. Each table includes

attributes, or table columns that describe the entity. Specifically, the entities include a

“ROUTE” table that contains overall route identification attributes, a CTRL_FEAT table

that contains relevant control features for defined routes, a GEO_FEAT table that houses

defined geographic features and an associative table that associates various routes with

various geographic features, and vice versa.

Using the features of the SQLXML Application Programming Interface (API), we

constructed an annotated XML Schema that maps the relational data to an XML instance

document. Figure 16 illustrates a snippet of the annotated schema and the entity-relation

diagram of the route data model. The boxed attributes in the schema represent the

CTRL_FEAT table in the relational database and the one-to-many relationship between

the ROUTE table and the CTRL_FEAT table. Careful examination of the mapping

schema indicates the mapped XML elements and corresponding relational entity

attributes. All relationships are defined in the <xs:annotation> section of the schema

document. Once the relational data is mapped to the desired XML structure, it may be

53

transformed and manipulated by virtually any application in any language, on any

platform. As well, the XML structure may be marked up into semantic representation,

allowing intelligent agents to understand its meaning as well as content. Of course, XML

data may be rendered in traditional formats also. For example, the XML data may be

transformed into HTML and rendered in a client browser, or it may be transformed into

something like PDF, a more formal presentation media. Both of these renderings, and

potentially many other formats (e.g. text, SVG, WAP, etc.) are dynamically produced

based on the contents of the (relational) database. The Route application implements

features of SQLXML and XSLT to create dynamic HTML outputs and Cocoon 217 to

produce dynamic Adobe® PDF outputs. In a SWEB application, the exposed XML data

could be transformed into an OWL instance document and interpreted by an intelligent

agent employing the associated ontology.

CTRL_ FEAT
ctrl_feat_id
route_id [FK]
ctrl_feat_name
ctrl_feat_cat_code
ctrl_feat_type
lat_co ord
long_coord
lat_long_precision_code

GEO_FEAT
geo_feat_ id
geo_feat_name
geo_feat_type
lat_coord
long_coord
lat_long_precision_code
elevation
elevation_precision_code

ROUTE
route_id
route_name
route_direction_code
route_mobility_code

ROUTE_GEO_FEAT [As]
route_id [FK]
geo_feat_ id [FK]

Contains

Associated
by

Contains
Part of

Described in

Belong
in

<xs:schema xmlns:xs ="http://www.w3.org/2001/XMLSchema" xmlns:sql ="urn:schemas-microsoft-com:mapping-schema ">
<xs:annotation>

<xs:appinfo >
<sql:relationship name="ROUTE_to_CTRL_FEAT" parent="ROUTE" parent-key="route_id" child="CTRL_FEAT" child-key="route_id"/>
<sql:relationship name="ROUTE_to_ROUTE_GEO_FEAT" parent="ROUTE" parent-key="route_id" child ="ROUTE_GEO_FEAT" child-key="route_id"/>
<sql:relationship name="ROUTE_GEO_FEAT_to_GEO_FEAT" parent="ROUTE_GEO_FEAT" parent-key="geo_feat_id" child="GEO_FEAT"

child-key ="geo_feat_id"/>
</xs:appinfo >

</xs:annotation>
.
.
.

<xs:element name="ControlFeature" sql:relation="CTRL_FEAT" sql:key-fields ="ctrl_feat_id" sql:relationship ="ROUTE_to_CTRL_FEAT">
<xs:complexType >

<xs:sequence>
<xs:element name="ControlFeatureName" type="xs:string " sql:field="ctrl_feat_name" sql:datatype="char"/>
<xs:element name="ControlFeatureType" default="AOI" sql:field ="ctrl_feat_type" sql:datatype="char">

<xs:simpleType >
<xs:restriction base="xs:string ">

<xs:maxLength value="6"/>
<xs:enumeration value="AOI"/>
<xs:enumeration value="AOP"/>

.

.

.
<xs:enumeration value="SUPARE"/>
<xs:enumeration value="WAYPT"/>

</xs:restriction >
</xs:simpleType >

</xs:element>
<xs:element name="ControlFeatureCategoryCode" default="ROUTE" sql:field ="ctrl_feat_cat_code" sql:datatype="char">

<xs:simpleType >
<xs:restriction base="xs:string ">

<xs:maxLength value="6"/>
<xs:enumeration value="NOS"/>
<xs:enumeration value="ROUTE"/>

</xs:restriction >
</xs:simpleType >

</xs:element>
<xs:element name="ControlFeatureLatitudeCoordinate" default="0" sql:field=" lat_coord" sql:datatype="decimal ">

<xs:simpleType >
<xs:restriction base="xs:decimal ">

<xs:minInclusive value="-90"/>
<xs:maxInclusive value="90"/>

</xs:restriction >
</xs:simpleType >

</xs:element>
<xs:element name="ControlFeatureLongitudeCoordinate" default="0" sql:field="long_coord" sql:datatype="decimal ">

<xs:simpleType >
<xs:restriction base="xs:decimal ">

<xs:minInclusive value="-180"/>
<xs:maxInclusive value="180"/>

</xs:restriction >
</xs:simpleType >

</xs:element>
<xs:element name="ControlFeatureLatitudeLongitudePrecisionCode" default="DEGREE" sql:field ="lat_long_precision_code "

sql:datatype="char">
<xs:simpleType >

<xs:restriction base="xs:string ">
<xs:maxLength value="6"/>
<xs:enumeration value="DEGREE"/>
<xs:enumeration value="MINUTE"/>
<xs:enumeration value="SECOND"/>

</xs:restriction >
</xs:simpleType >

</xs:element>
</xs:sequence>
<xs:attribute name="ID" type="xs:integer" sql:datatype="int" sql:field ="ctrl_feat_id"/>

</xs:complexType >
</xs:element >

.

.

.
</xs:schema >

Mapping Datatypes

Mapping XML Elements and Relational
Attributes

Mapping XML Elements
 and Relations

Declaring a Relationship

Defining Relationships

}

Relational Data Model

Figure 16. Sample from Annotated Schema and Entity-Relation Diagram.

17 See [http://xml.apache.org/cocoon] for information about Cocoon.

54

Another key concept to enumerate is the notion of incompleteness and lack of

foreknowledge. The Route application, although it may be transformed into a semantic

instance for one application/agent, it may only comprise a partial input (data) for another

application. Similarly, after being semantically-enabled, the data may be discovered by

an agent a priori and used by a completely different independent application.

As previously mentioned, one of the possible transformations is into OWL. This

enables the relational data to be described in a KR format making it machine

interpretable. KR will enable software agents to interpret contents at run time and allow

the data to be described for use by other machines, not just human actors. Dynamic

discovery of (web) services will enable data residing in computers to be consumed

dynamically with no previous knowledge of the provision of services. Having

overviewed a concrete implementation of a relational database application exposed as

XML, we now discuss other aspects of XML and relational structures.

C. XML AND RELATIONAL STRUCTURES

In a relational model a data item is stored as a field, a field within in record, and a

record within a table. These data elements conform to a defined data type. The data item

is indexed as appropriate and can be extracted using SQL. The same data item in an

XML structure is stored as an element or attribute, and it is a child of a parent element

and can conform to a data type (using an XML schema). It can be extracted using and

Xpath query, a query language for XML.

One may erroneously conclude that one could simply surround relational data

with element tags and call it XML. XML documents are designed to be human readable;

that is, they provide human readable terms in the tag set to describe the data. However, at

present, XML documents do not offer the flexible querying capabilities relational models

provide. For example, Xpath queries require more processing than T-SQL18 queries; thus

they are slower. (Williams, 2002, 202) This situation results in at least one use case for

exposing relational data as XML, and possibly executing T-SQL commands to

18 T-SQL or Transact-SQL is the language used to administer Microsoft® SQL Server 2000™.

Transact-SQL is an extension of the language defined in the SQL standards published by the International
Standards Organization (ISO) and the American National Standards Institute (ANSI). (SQL Server Books
Online)

55

manipulate data. Another benefit of exchanging data between applications using XML is

the lower number necessary conversions. To exchange data between N possible formats

would require N2 conversion filters; whereas, using XML would require only 2N

conversion filters (one for each direction from RDBMS to XML, and vice versa).

(Birbeck, 2002, 40)

Mapping relational structures to other relational structures is relatively

straightforward; however, cross-mapping between relational and XML is not as simple as

a one-to-one mapping. For example, instances of the same element in XML are allowed.

If this were allowed in a relational model, new tables with appropriate foreign keys

would have to be constructed. Once the mapping has been defined, it is essentially fixed.

Data exposed as XML loses the benefits of being stored relationally, but gains portability.

Although XML is human readable, relational structures are not necessarily. A tradeoff

between readability of XML documents and structured relational data must be weighed.

When converting XML structures to relational databases, consideration must be given to

the underlying relational model. If the relational database is new, this is less of an issue;

otherwise, intermediate tables may be required. Despite these issues, the benefits of

cross-mapping between XML and relational structures remain19.

Various methods for effective, automatic conversion of XML data into and out of

relational databases exist. All the major commercial RDBMS vendors such as IBM,

Microsoft, Oracle, and Sybase have developed tools to assist in storing and exposing

XML in relational tables.20 The Route application implements the SQLXML API with

SQL Server 2000. This technology offers the benefits described; however, there are

limitations. For example, the SQLXML API currently does not implement the entire

Xpath specification. (Williams, 2002, 208) Additionally, there are security implications

to allowing URL access to data that must be considered. (Williams, 2002, 122) Having

considered mapping between relational and XML models, we consider a new paradigm

for storing XML.

19 There are dangers if the terms being mapped are described in an ontology. While a mapping may

occur on the surface (term to term) the underlying logic can conflict

20 XML.com [http://www.xml.com/pub/a/2001/06/20/databases.html].

56

D NATIVE XML DATABASES
An alternative to storing XML in relational databases is the concept of a Native

XML database (NXD). This solution offers advantages and disadvantages as compared

to relational solutions. If the entire application deals with XML formats, there may be no

need to convert between relational and XML formats; thus decreasing processing which

increases application speed. Another benefit to XML databases is that many use the

Xpath query language which is a more natural query language than SQL, but relegated to

querying at the document level only.

A NXD is defined as21:

• Defining a logical model for an XML document – as opposed to the data
in that document – and stores and retrieves documents according to that
model. At a minimum, the model must include elements, attributes,
Parsed Character Data (PCDATA), and document order. Examples of
such models are the Xpath data model, the XML infoset, and the models
implied by the Document Object Model (DOM) and events in the Simple
API for XML (SAX) 1.0.

• Has an XML document as its fundamental unit of logical storage, just as a
relational database has a row in a table as its fundamental unit of logical
storage.

• Is not permitted to have any particular underlying physical model. For
example, it can be built on a relational, hierarchical, or object-oriented
database, or use a proprietary storage format such as indexed, compressed
files.

Three key points from this definition are the following: The NXD is specialized

for storing XML data and stores all components of the XML model intact. XML

documents go in and XML documents come out. Third, a NXD may not be a standalone

database. NXDs are not fundamentally a new database model, and they are not intended

to replace relational databases. They are, however, a robust model for storage and

manipulation of XML documents.

Though several implementations of NXDs exist, most are first generation. A

small number of vendors currently implement second generation products. The NXD

model is still maturing and will likely continue to do so. A casual review of the various

XML databases reveals significant model variation across vendors.

21 Definition taken from “Introduction to Native XML Databases” XML.com
[http://www.xml.com/pub/a/2001/10/31/nativexmldb.html].

57

Despite the variances in implementations, NXDs store XML documents as a unit

and create a model closely related to the XML or one of related XML technologies such

as DOM. The fundamental NXD model includes arbitrary levels of nesting and

complexity, as well as complete support for mixed content and semi-structured data. The

input model is automatically mapped by the NXD to the underlying storage mechanism.

The mapping used ensures the XML specific model of the data is preserved.

NXDs manage collections of documents, allowing one to query and manipulate

those documents as a set. Collections basically are equivalent to tables in relational

databases. XML documents are generically equivalent to tuples, or rows in relational

models. NXDs diverge from the table concept in that not all native XML databases

require a schema to be associated with a collection. This means an XML document can

be stored in the collection, irregardless of a schema. Queries are still able to be

constructed across all documents of the collection. NXDs that support “schema-less”

functionality are termed schema-independent (or “non-validating”). Schema-independent

collections give the database great flexibility and ease application development.

Conversely, the risk of low data integrity increases. Strong schema support may be

achieved by implementing a schema-dependent NXD or by including requisite document

validation in the application design. For example, prior to writing data into the database,

the data to be saved may be validated against a schema.

Xpath is the current NXD query language of choice. Xpath has been extended to

allow queries across collections of documents. However, Xpath was not originally

designed as a database query language and comes up short in several ways. Some

limitations include a lack of grouping, sorting across document joins, and support for data

types. Many of Xpath’s limitations may be overcome by Extensible Stylesheet Language

(XSLT), but a more database-oriented language is under development, called Extensible

Query (XQuery)22. Several vendors have already released prototype XQuery

implementations for use in their databases.

Updates are a significant weakness of NXDs. Most NXDs require the user to

retrieve the document to be updated, change it with a selected XML API, and then return

22 See [http://www.w3c.org/XQuery].

58

it to the database. The open source XML database named Xindice, implements XUpdate

for this purpose; however, as of the time of this writing the XUpdate specification is still

a work in progress, and is not fully functional.

1. Application Areas of NXDs
Other than the requirement to use XML, NXDs are quite flexible. For example,

NXDs excel at storing document-oriented data such as XML and derivative technologies

like XHTML, XSLT, or OWL. NXDs are likewise well-suited for data having a very

complex structure and deep nesting, and data that are semi-structured in nature. In the

context of the knowledge generation process, NXDs provide a rapidly deployable

solution for enabled, semantic content with no mapping or interface issues to navigate.

NXDs store XML documents in collections which are readily accessible through

HTTP. Ubiquitous and simple HTTP renders geography arbitrary. NXD collections

essentially form a “web” of continually expanding and interwoven data structures. This

complex, far-reaching structure will serve as a key technology enabler for the SWEB.

That is, by interconnecting ontologies and semantic data structures identified with

universal resource names software interpretable information will be widely available for

machine consumption. This factor substantially will decrease the adverse effect of

knowledge dispersion.

One of our research objectives was to experiment with XML databases to gain

insight on how they perform compared to traditional relational databases. This was

important to us as ontology documents and instances will most likely be in some from of

XML. To that end, we developed two applications that use the open source NXD called

Xindice.23

One application was a web application that allowed users to input and manage

bibliography instances into Xindice. The instance documents stored in the Xindice

database were bibliography references. The web application provided the common

database facilities to add, delete, and update data in the database. However, as we

employed Xindice, database instances were at the document level. All transactions had

to retrieve the entire document to successfully complete. Further, Xindice is a non-

23 See [http://www.xml.apache.org/xindice[for more information.

59

validating (i.e. schema-independent) database. As discussed earlier, this offers

advantages and disadvantages. One advantage for our application included the ability to

define an “external” schema that was easily modified and did not affect instance

documents. Disadvantages included extra processing and increased potential for

compromising data integrity. Extra processing stemmed from the need to retrieve the

entire document to perform transactions. Greater potential for poor data integrity arose

from the use of a non-validating database. In practice, the performance loss was largely

unnoticeable, and integrity issues were addressed at data entry using a validating schema.

In sum, we believe this was an application instance where either a relational or native

XML database would prove equally suitable.24

Another application of Xindice included storing XML representations of OTH-

GOLD text messages. In this application instance, semi-structured data messages (OTH-

GOLD messages) were intercepted by a simple agent and parsed into a structured (XML)

document. The XML instance document was then stored programmatically into a

Xindice collection. Subsequently, another agent, upon notification, would “peer into” the

appropriate instance document looking for relevant data, using Xpath to query the

document(s). Depending on the results of the query, that agent would take specified

actions, which might include parsing and storing the appropriate instance into another

collection. The use of Xindice was well-suited for this application as it reduced

processing and stored our data at its atomic level with no need for mapping to traditional

data structures. Additionally, because our native data model was XML, it was simple to

transform the relevant contents of the message into a higher level, semantic structure.

These two applications illustrate the point that no single solution is suitable for

every use case; however, it did demonstrate utility for a native XML storage mechanism.

Just as there is no single optimal choice for data storage models, there is not just one

implementation of an NXD.

24 Please note that formal tests, like scalability, were not conducted.

60

2. NXD Implementations25
There are approximately 20 different native XML databases on the market at this

time. Some commercial products include SoftwareAG’s Tamino, X-Hive, and Excelon.

Open source implementations include Apache Xindice, eXist, and Ozone/XML. A list of

NXDs and XML-enabled databases can be found at

http://www.rpbourret.com/xml/XMLDatabaseProds.htm. Each product implements its

own API, which increases the difficulty of developing applications using NXDs.

Connecting to a native XML database is similar to connecting to relational databases that

use JDBC or ODBC. The API used is called XML:DB and its purpose is to provide

similar functionality. Each NXD that supports the XML:DB API must provide a

database-specific driver that contains the database connection logic. Again, the driver

concept is similar to JDBC and ODBC.

E. SEMANTIC STORAGE

Semantic representation is the goal of the Discovery and Generation phases of the

knowledge generation process. The ability to discover described data with embedded

meaning and structure them together as information is necessary to create knowledge.

Much of the discussion has centered on transformation and representation of existing data

sources; whereas semantic data sources imply a pre-existing semantic structure of data

with meaning embedded as opposed to raw data. Information and data will be accessed

and interpreted by machines and will provide the fuel for knowledge bases and inference

mechanisms.

Representing data in a machine-readable format enables data to be “understood”

by machines (i.e. agents). More concretely, native XML databases lend themselves

readily to support the storage of semantic representation. Using namespace features to

reference and link concepts and meaning between related documents effectively creates a

web of meaning. The related documents may be reused or extended by applications

arbitrarily and without regard to geography. The web effectively becomes monolithic

and offers the potential for near automatic knowledge discovery.

25 XML.com [http://www.xml.com/pub/a/2002/01/09/xmldb_api.html].

61

F. ENABLED DATA
From heterogeneous, semi-structured and structured data sources to highly

structured, semantic representations, relevant data is transformed to a machine

interpretable format, OWL. As previously discussed, relational data, or even semi-

structured data such as USMTF messages, may be mapped to XML and then transformed

to the OWL using XSL. Additionally, XML data may be stored natively in a Native

XML database; thus reducing processing. Finally, relevant data may be stored from its

inception in the semantic language of the system, OWL. Regardless of the source and its

associated format, XML enables loose coupling of systems and semantic representation.

Data discovery and manipulation lead to storage. The storage facilities and

methodologies discussed demonstrate a variety of options. Data may be stored using a

variety of structured models; however, by definition, this structure will enable knowledge

generation, or information usage. Prior to usage, however, the enabled, stored

information must be transferred. One method for transferring information may be

conducted through mobile autonomous agents. We argue that these agents are an

extension of distributed computing, which is an extension of traditional client/server

technology. To this end, we present a survey of the progression of distributed computing

paradigms up to and including the Control of Agent Based Systems (CoABS) and SWEB

services.

G. SUMMARY

It is only fitting to close with some perspective. There are no magic solutions.

That is true of XML as well. The drawbacks of using XML with data include reduced

speed and increased transmission time. The extra processing to get data to and from

XML reduces the speed of applications. The larger file size of XML documents takes

longer to transmit. (Hunter, 2001, 481) However, the flexibility, portability and other

advantages realized far outweigh the added processing time. Additionally, it has been

62

demonstrated that compression technologies can actually shrink an XML document to

sizes less than their textual counterparts.26 Further, decreasing latency of network

operations will tend to diminish any notice of delays created by XML transmission.

OWL will be discussed in detail in subsequent chapters; however, it is worth

noting at least one drawback to it. That is, although is fundamentally an XML

technology, it is very intricate and complex. Presently, visual editors are scarce and are

only at beta or “1.0” versions. With time this will change and thus simplify OWL

development and deployment.

This chapter has discussed various aspects of data. We discussed the idea of

unstructured, semi-structured and structured data. We then concentrated on structured

data and illustrated some potential applications of XML, specifically related to the MVC

paradigm, interoperability and the Semantic Web. We also discussed XML and relational

database structures and how they might be used together. We also elaborated on Native

XML database concepts and implementations. One point to take away from this chapter

includes understanding the importance of representing data in such a way that it becomes

machine-interpretable information. That is to say data is a building block of knowledge,

and it is essential to effectively represent it semantically. With machine-readable

information present we are able to develop agents capable of automatically,

autonomously understanding the information and responding appropriately.

However, prior to elaborating on agents, it is necessary to discuss the methods

agents will employ to access and “read” this stored information. These methods may be

classified under the umbrella of “Distributed Computing.” Effective distributed

computing technologies and techniques factor importantly in connecting these “small

worlds” of information repositories.

26 In the 1999 Global Command, Control, Communications, and Intelligence Joint Warfare

Interoperability Demonstration, an Air Tasking Order (ATO) message was compressed a smart
compression utility. Dr. Robert Miller of MITRE reported that XML-based ATOs were actually smaller
than the original ATOs in compressed MTF format (i.e., the compressed XML-ATO was 46KB with the
smart compression utility; and the MTF-ATO was 72KB compressed with Pkzip).

63

IV. DISTRIBUTED COMPUTING: SMARTLY CONNECTING
SMALL WORLDS

A. DISTRIBUTED COMPUTING
With data structured and able to be machine-processed and highly interoperable,

we are ready to access and retrieve it. The purpose of this chapter is to demonstrate an

effective means to interact with and across the network. Several distributed computing

models are discussed and compared. These models culminate in current distributed

computing paradigms and potential future ones. Our emphasis will be how the present

and potential distributed computing mechanisms can best help to enable the SWEB.

Semantically enabled, structured data sources are a prelude to the processing and

handling required to bring a data source to a usable state. After structuring data and

subsequent representation as information, we must consider how to discover, interact,

make appropriate requests, and rapidly move the results of our requests to the requestor

(Edwards, 1999, 6). The “plumbing” or network infrastructure will impact how

users/agents interact with information sources. We must not only be able to satisfy our

requests for information, we must be able to do so in a loosely coupled,27 flexible

manner. Depending on the infrastructure or distributed computing model we implement,

we benefit more or less. As with most things, there are tradeoffs and different

approaches are not usually mutually exclusive. In network-centric warfare, the network

is arguably the backbone; however, effective distributed computing will enable

significant new possibilities. Certainly, in the Semantic Web (SWEB) domain it will be

no less important.

The progression of distributed computing models has seen a number of designs,

and just as XML has impacted data structuring and representation, it fulfills a vital role in

a new distributed computing paradigm called “Web services.” We believe Web services,

more precisely, SWEB services will prove integral to improving workflow between

organizations. To understand the SWEB services’ role it is important to survey the

progression of distributed computing. As such, we highlight some of the more prevalent

27 By “loosely coupled” we mean that level of dependencies between systems or entities is low.
Accordingly, changes in one system will not necessarily “break” the interaction between systems.

64

distributed computing models including Web services, which are presently achieving

much notoriety in the distributed computing world. We then discuss SWEB services, an

extension of Web services. The SWEB services model will be analyzed for utility and

applicability to the SWEB, especially for military purposes.

In addition to SWEB services, the Control of Agent Based System (CoABS)

implementation, an extension of Sun Microsystems® Jini™, will be discussed and

analyzed in the context of agents and services. All these efforts are the latest in a broader

concept of distributed computing known as Service Oriented Architecture (SOA). The

aim of SOA is to enable software components, functions, objects and hardware devices

on different systems to be accessible as services; that is, dynamic, ubiquitous, pervasive

computing.

Our interest in distributed computing is largely centered on how to intelligently

employ these emerging technologies, like CoABS/Jini™ and SWEB services, to speed

the military decision maker’s effective decision rate, thus gaining knowledge superiority.

We envision agents interacting with semantic structures to assist with knowledge creation

and decision making. Agents embedded with semantic structures for intelligence and

constructed of mobile code for autonomy will be delegated the responsibility to acquire

information needed in support of military operations. Prior to realizing these ambitious

goals, we discuss the world of distributed computing in more concrete terms.

Distributed computing is a type of computing in which different components and

objects comprising an application can be located on different computers connected to a

network. Distributed computing involves computing on more than one computer system.

Each computer in the distributed application has a role to play in the overall application.

In a classic client/server model, a web client interacts with a remote application server

which in turn may access a database server system; that is, a 3-tier architecture. This type

of construct has morphed from the 3-tier architecture to a more sophisticated n-tier

architecture where any number of components may combine to execute workflow

processes. For example, consider logistics support to military operations wherein access

to inventory management systems and ordering systems is crucial to operations support.

Recent events in operation Iraqi Freedom highlight the importance of logistics support.

65

This (logistics) support is distributed across physical and logical boundaries, and across

multiple organizations – military and civilian, foreign and domestic. The need for

flexible and interoperable systems is readily apparent. It emphasizes the importance of

establishing a robust, loosely coupled distributed computing mechanism. The ability to

coordinate on such a grand scale and to orchestrate such logistics support is remarkable

and unparalleled. Without the interconnecting infrastructure this feat would simply not

be possible.

Other advantages of distributed computing include increased performance by

applications working in parallel and spreading the load. Fusing intelligence from

multiple sources and performing complex calculations using numerous processing

devices are enhanced when distributed computing is employed. Collaboration among

systems is also an advantage of distributed computing. The ability to share situational

awareness information and a common operating environment substantially improves

coordination and strategy development among military decision makers. Some key

advantages are highlighted in Table 2.

Characteristic Description Application

Higher performance Applications can execute in parallel and
distribute the load across multiple servers.

Advanced numerical calculations, such
as meteorological operations.

Collaboration Multiple applications can be connected
through standard distributed computing
mechanisms.

Shared situational awareness and
common operating environments.

Higher reliability and
availability

Applications or servers can be clustered in
multiple machines.

Supports redundancy in case of system
failures.

Scalability This can be achieved by deploying the
reusable distributed components on powerful
servers.

Facilitates advanced Research and
Development, Testing and Evaluation.

Extensibility This can be achieved through dynamic
(re)configuration of applications that are
distributed across the network.

Supports ability for mobile units to
maintain connectivity through changing
areas of operations.

Higher productivity
and lower
development cycle
time

By breaking up large problems into smaller
ones, these individual components can be
developed by smaller development teams in
isolation.

Facilitates systems design and
development.

Reuse The distributed components may perform
various services that can potentially be used
by multiple client applications. It saves
repetitive development effort and improves
interoperability between components.

Allows multiple organizations to interact
with one another. Facilitates
interoperability between Services and
Agencies.

Reduced cost Because this model provides a lot of reuse of
once developed components that are
accessible over the network, significant cost
reductions can be achieved.

Reduces life-cycle cost of systems.

Table 2. Advantages of Distributed Computing (After: Nagappan, 2003, 5).

66

After considering the advantages of distributed computing and it significance, we

survey the progression of distributed computing.

1. Client/Server Architecture
In the early, 2-tier, systems there was an upper layer and a lower layer. The upper

layer contained the presentation and business logic (client), and the lower layer

encapsulated the application organization and data storage (server). In the client/server

scheme the server is generally a database server and organizes and retrieves data. The

client contains the Graphical User Interface (GUI) logic and executes the business logic.

This was brittle because changes in the server necessitated changes in all the clients. This

high-maintenance model was costly and impractical, and led to 3-tier systems wherein

the business logic and other control logic were executed on the server in a middle layer

between the client and the application data. One primary advantage of this was to

essentially decouple the client from the application. Generic clients could be built to

interact with multiple applications. Examples of client/server systems abound. Web-

based applications almost exclusively implement the client/server structure. From the

intelligence community to logistics agencies collaborating and sharing data, and to

individual military units advertising local amenities, this structure dominates. However,

the client/server approach it is not perfect.

A balance between server-side and client side processing is always sought.

Client-side processing requires robust (fat) clients to execute application-specific logic.

Placing more logic on the client effectively speeds the server; however, more coupling

occurs as the client must be more and more application-logic savvy. Conversely,

increased processing on the server leads to more “thin” clients and looser coupling;

however, it effectively slows down the server. The need to balance the load is an

ongoing exercise, and design decisions invariable affect pre-existing applications, and

applications to come. Client/server systems are vulnerable to hacking. Increased

network bandwidth demands result from calls to the server. These are typically database

oriented applications.

67

2. CORBA
Remote Procedure Call (RPC) is a method for executing functions/methods on

remote machines.28 Similar, but incompatible RPC standards include the multi-platform

Common Object Request Broker Architecture (CORBA) and the Microsoft-specific

Distributed Component Object Model. (Birbeck, 2001, 41) CORBA is based on open

standards, and was developed by the Object Management Group (OMG).29

CORBA is different from client/server systems in that it is an object oriented

solution. It is not based on proprietary solutions. CORBA is programming language,

operating system, and platform agnostic. CORBA operates by mapping specific

languages to a common interface language called Interface Definition Language (IDL).

IDL is designed to expose services (methods/functions) of a CORBA remote object.

In the CORBA model, disparate languages such as Java, C, and C++

communicate with a neutral IDL and interoperate via a Common Object Bus. The Object

bus provides the communications infrastructure to send and receive requests/responses

between clients and servers. It is the foundation that enables interoperability in a

heterogeneous environment. Figure 17 below illustrates an example architectural model

of CORBA using different programming languages. The IDLs between the server

skeletons and the server classes provide interfaces for calling applications (clients) using

a standard language supported by the ORB object bus.

28 [http://www.xmlrpc.com], 4/23/2003.
29 OMG is a non-profit consortium responsible for production and maintenance of framework

specifications for distributed and interoperable object-oriented systems.

68

Java C++CJavaC++C

Client Stubs Server Skeletons

IDLIDL IDL

CORBA - ORB (Object Bus)

Figure 17. Example of CORBA Architectural Model (From: Nagappan, 2003, 9).

Advantages of CORBA over client/server architectures include the following.

• Operating System and programming language independence

• Legacy and custom application integration

• Rich distributed object infrastructure

• Location and network transparency

• Remote callback support. Objects may receive asynchronous event
notification from other objects.

• Dynamic Invocation Interface. CORBA clients can use static or dynamic
method invocations. They can define method calls at compile time or
discover objects’ methods at runtime.

Despite these advantages there are success/adoption inhibitors. For example,

there are high initial investment costs in the form of training and coding. Availability of

CORBA services is limited to a small number of implementations. Scalability is limited

due to the tightly coupled nature of the connection oriented architecture. The next

distributed computing model we discuss is (Java) language-centric; that is, Remote

Method Invocation.

69

3. Java RMI
The Java Remote Method Invocation (RMI) was developed by Sun Microsystems.

RMI enables distributed Java object-based application development using the Java

programming language. RMI extensively uses java object serialization which is a

technique that allows objects to be converted to data streams, which are readily

transported over network communication protocols. RMI uses the Java Remote Method

Protocol (JRMP) as the inter-process communication protocol, enabling Java objects

residing in different Java Virtual Machines (JVM) to transparently invoke one another’s

methods. Because the JVM can be on different machines anywhere on the network, RMI

enables object-oriented distributed computing.

RMI employs a registry mechanism to instantiate a “lookup service.” The lookup

service stores references to remote objects and enables object lookups from client

applications. The RMI infrastructure acts as a medium between RMI clients and remote

objects. Figure 18 illustrates the basic interaction between RMI components.

Essentially, the client object makes calls on the remote server via the RMI stub. The

RMI stub serves as a proxy representing the remote service. The stub uses the RMI

protocol to communicate back to the RMI skeleton over the network. The RMI skeleton

interacts with the actual remote services to execute the actual method calls, and then

returns the results.

70

Client Server

Java RMI
Server

Java
Client

Java RMI Protocol

RMI Stub
(Proxy)

RMI
Skeleton

Figure 18. RMI Client/Server Communication (After: Edwards, 1999, 724).

The RMI architecture is composed of the components described in Table 3.

Component Description

RMI client Performs the remote method invocations on a server object. It can pass
arguments that are primitive data types or serializable objects.

RMI stub The client proxy that encapsulates the network information of the server and
performs the delegation of the method invocation to the server. The stub also
marshals the method arguments and unmarshals the return values from the
method execution.

RMI infrastructure Consists of the remote reference layer and the transport layer. The remote
reference layer separates the specific remote reference behavior from the
client stub. The transport layer provides the networking infrastructure, which
facilitates transporting data to and from method invocations.

RMI skeleton Receives method invocation requests from the stub and processes the
arguments (unmarshalling) and delegates them to the RMI server. It also
marshals the return values and then passes them back to the RMI stub via the
RMI infrastructure.

RMI server The Java remote object that implements the exposed interfaces and executes
the client requests. It receives incoming remote method invocations from the
appropriate skeleton, which passes the parameters after unmarshalling.
Return values are sent back to the skeleton, which oases them back to the
client via the RMI infrastructure.

Table 3. Java RMI Components (After: Nagappan, 2003, 12).

71

RMI frees programmers from developing application-level protocols necessary

for encoding and decoding messages for data exchange. RMI interoperates with CORBA

components through RMI-IIOP (Internet Inter-ORB Protocol). Fundamentally, RMI is a

Java-programming-language-enabled extension to traditional RPC mechanisms. RMI not

only allows data to be passed between objects over the network but also full objects,

including code. (Jini™ AO, 1999, 7)

RMI is limited to the Java platform; there is no provision for language

independence. Application architectures are tightly coupled because of its connection-

oriented nature, making scalability difficult to achieve. There is no provision for specific

session management support.

The next model is a platform-specific solution called DCOM. It is somewhat

similar to RMI in that it is used in a Windows computing environment; whereas, RMI is a

Java based solution, but can be run on various platforms and operating systems.

4. Microsoft™ DCOM
The Microsoft Component Object Model (COM) provides a way for Windows-

based software components to communicate with each other by defining a binary and

network standard in a Windows operating environment. COM provides a distributed

application model for ActiveX components. The follow-on technology to COM is

Distributed COM (DCOM). DCOM is Microsoft’s answer to distributed computing in a

Windows environment. DCOM allows COM objects to communicate via a Remote

Procedure Call (RPC) mechanism. Similar to RMI, DCOM uses a stub and skeleton

approach whereby a defined interface that exposes COM object methods can be invoked

remotely over a network. DCOM servers can host multiple COM objects, and when they

are registered in a registry, they become available to all clients who discover them using s

lookup mechanism.

Similar to RMI, DCOM is quite successful in distributed computing support in a

single platform environment, namely Windows. DCOM limitations are essentially the

same as RMI; they include language lock-in, difficult scalability, and complex state and

session management issues.

72

5. Message Oriented Middleware
CORBA, RMI, and DCOM share a common, tightly coupled, synchronous

communication model (i.e. request/response). This tight coupling leads to scalability

issues and brittle application implementations. Message Oriented Middleware (MOM),

also known as message-queuing systems, is based on a loosely coupled, persistent

asynchronous communications model where a client may be ignorant of its application

recipients or its method arguments. MOM enables applications to communicate

indirectly using a message provider queue.

In a MOM architecture, the client sends messages to a message queue (essentially

a message buffer), and the receiving application picks up messages from the queue. The

message-queuing system provides persistent communication by storing messages as long

as it takes to deliver them to the receiver(s). (Tanenbaum, 2002, 100) In this construct,

the message sending application continues to operate without waiting for a response from

the message receiving application. An important aspect of message-queuing systems is

that a sender is generally given only the guarantee that its message will eventually be

inserted in the recipient’s queue. No guarantees are given about when, or even if the

message will actually be read, which is completely determined by the behavior of the

recipient. These characteristics enable the loosely coupled communications facility.

(Tanenbaum, 2002, 109) The message queuing system provides queues for senders and

receivers, and is responsible for managing those queues. To ensure or increase reliability,

messages may be persisted in a database or file system. The message queues are

distributed over multiple machines; therefore, for the message queuing system to properly

transfer messages it must implement a mapping of queues to their respective network

locations. This mapping is completely analogous to the Domain Name System for e-mail

in the Internet. (Tanenbaum, 2002, 111)

The asynchronous messaging paradigm implemented by MOM systems is

comparable to e-mail systems used by human actors. E-mail sent between users may be

stored in the recipient’s inbox for an indefinite time before being read and acted upon. In

the meantime, the sender is free to send other e-mail messages or engage in any other

activity. At a later date, should the recipient reply to the sender, a transaction may be

73

completed or may simply lead to additional message exchanges. In much the same

paradigm, software applications employing asynchronous messaging are free to continue

execution while a message goes unanswered.

Some implementations of Message Oriented Middleware include Sun ONE

Messaging Queue, IBM MQSeries, TIBCO, SonicMQ, and Microsoft Message Queue

(MSMQ). Java provides the Java Messaging System (JMS) API. XMLBlaster is an open

source MOM implementation.30 Some challenges of MOM are native APIs which lead

to vendor lock-in, and proprietary message formats.

6. Jini™
RPC systems attempt to make the call of a function on a different machine look

(to the programmer) like the call of a local function in the same address space. Remote

object systems like CORBA and DCOM raise the level of programming from function

calls to method invocations on objects but still essentially try to mimic the semantics of

local invocation. All of these systems, including XML Web services, try to make the

network transparent or “go away,” from the programmer’s perspective. But the network

is not transparent. The hardest parts about developing distributed systems are the aspects

that do not “go away.” For example, the time required to access a remote resource

(latency) may be orders of magnitude greater than accessing the same resource locally;

networks fail in ways standalone systems don’t; and networks are susceptible to partial

failures of computations that can leave the system in an inconsistent state. RPC and

CORBA don’t even consider performance and latency as part of their programming

models – they simply ignore the issue entirely. (Edwards, 1999, 43) New failure modes

require that the system not only know what to do when an error occurs, but that it also be

aware an error occurred in the first place. Additionally, failures within distributed

systems – from a single software process to an entire computer failure – “somewhere” on

the network can leave the system in an inconsistent state.

30 XMLBlaster software is written in Java and is free for private, commercial, and educational use.

(See [www.xmlblaster.org]).

74

An n-tier network is designed in such a way as to enable the services to interact

with each other within the network. The technologies used to solve this problem are

CORBA, DCOM and other RPC-based systems. These technologies must:

• Know about each other while being built, at least to the extent of sharing
IDL definitions

• Be developed in lock step, because changing the stub or skeleton files
requires changing all of the corresponding stub or skeleton files.

• Require fairly tight levels of administration

Jini™ is an attempt to solve these problems. The Jini™ vision is this: When you

walk up to an interaction device that is part of the Jini™ system, all of its services are as

available to you as if they were on your own computer – and services include not only

software but hardware devices as well; that is, almost anything imaginable that passes

information in and out. Adding a new device to Jini™ is as simple as plugging it in.

Jini™ systems will combine computer and consumer devices along with a variety of

external sources – the Internet, broadcast, cable, satellite and landline. (Jini™ Now?,

1999, 2)

To help realize this vision, Jini™ makes assumptions about distributed systems

that other approaches do not consider. Computer scientist Peter Deutsche, who worked at

Sun Microsystems in the early 1990s, coined a set of distributed computing fallacies

known as Deutsche’s Eight Fallacies of Distributed Computing (based on problems that

happen in real networks over time). The following eight fallacies provide a back drop

from which to consider Jini™ characteristics.

• The network is reliable

• Latency is zero

• Bandwidth is infinite

• The network is secure

• Topology doesn’t change

• There is one administrator

• Transport cost is zero

• The network is homogeneous

Jini™ can deal with inherent unreliability of the network; keep up with constantly

changing topology; allow multiple administrators; evolve components; take failure

75

seriously in the construction of interactions. Jini™ extends the Java application

environment from a single virtual machine to a network of machines. The Jini™ system

federates computers and computing devices into what appears to the user as a single

system. It is assumed that the latency of the network is reasonable.

It assumes that each Jini™ technology-enabled device has some memory and

processing power. Devices without processing power or memory may be connected by a

software or hardware proxy that contains processing power and memory. (Jini™ AO,

1999, 3)

Jini™ technology consists of an infrastructure and a programming model that

address the fundamental issue of how clients connect with each other to form an

impromptu community. Jini™ lets programs use services in a network without knowing

anything about the wire protocol used by the service. One service might be implemented

using an XML-based protocol; another might be RMI-based, or CORBA-based. Jini™

technology is often compared to universal plug and play (UPnP), which is a discovery

protocol for devices. Jini™ technology and UPnP, or any connectivity scheme, can

interoperate because the Jini™ architecture is wire-protocol and transport-protocol

neutral. (Jini™ EO, 2001, 14) Jini™ adds a number of incremental changes to Java to

extend it to create a lightweight, distributed computing architecture. Based on the Java

language, Jini™ technology uses the methods incorporated by Java RMI protocols to

move objects, including their behavior, around the network. Network services run on top

of Jini™ software.

Figure 19 depicts one conceptual use of Jini™ and illustrates the various

protocols used within the Jini™ technology architecture. In this use case, a terminal

access sensor data via a Jini™ service and also accesses and/or writes to a knowledge

repository (KB). This particular example shows one service (satellite sensor) using a

device protocol over the Jini™ protocol. The other service (knowledge repository) is

accessed via an alternate protocol, such as an XML Web service. The knowledge

repository could also be a semantically-enabled information source that might allow the

decision maker to realize new information based on the incoming sensor data and the

76

information resident in the knowledge repository. Depending on the application, new

sensor data may be combined with the represented knowledge in the KB to adapt the

domain model.

Device

Application

Jini

Java

Network Transport

Operating System

Service/Agent

Jini

Java

Network Transport

Operating System

Service/Agent
protocol

Java RMI

Network
protocol

DeviceDevice
protocol

Bridge
protocol

Device

Device
Device

[Web] Service

KB

Acquire Sensor Data

Flat screen

Information Access

Figure 19. Jini™ Conceptual Usage (From: Jini™ TE, 1999, 1).

Java, although not a panacea, makes some strong progress on the issues that

increase the difficulty of programming distributed systems. First, Java assumes the

existence of a particular language everywhere; whereas, systems like CORBA and

DCOM are bolted on accessories to one or more languages. Java code is portable; and

thus readily mobile, and therefore, is able to move to the data to operate. The mobility

feature of Java makes it a prime candidate for implementing autonomous agents. Java

code moves as easily from machine to machine as data moves, even machines with

different operating systems or CPUs. Therefore, agent code can traverse the net, gaining

performance by moving close to the required data. The Java bytecode format is the

universal interchange format for executable code. (Edwards, 1999, 47)

77

Java’s security code mechanism ensures that code, once moved into a system, can

execute with a greater degree of safety than other approaches. For example, Java allows

fine-grained access control to machine resources based on security policies. (Edwards,

1999, 47) The distributed security model and its implementation define how entities are

identified and how they get the rights to perform actions on their own behalf and on the

behalf of others.

Again, Java is not a universal remedy, and it does not provide miracle solutions to

the problems described earlier; however, its model of distributed computing explicitly

acknowledges the differences in local and remote computing and provides tools to help

deal with them. (Edwards, 1999, 48) Additionally, one of Java’s strengths is its APIs

supporting networking.

RMI makes the problems of data portability simply go away. (Edwards, 1999,

52) RMI defines the base language within which the Jini™ services communicate. And,

by supporting secure and safe code motion, RMI allows the benefits of object oriented

programming to communicate between objects across device boundaries, and to work

across the network boundary. RMI provides mechanisms to find, activate, and garbage

collect31 object groups. Much of the Jini™ system is enabled by the ability of RMI to

move code around the network in a form that is encapsulated in an object. Jini™

leverages RMI and uses mobile code as a way to achieve maintenance, evolvability and

ease of administration for networked devices and services. RMI enables activation of

objects and the use of multicast protocol32 to contact replicated objects. Jini™ is not

RMI. Jini™ uses RMI extensively, particularly its facilities for mobile code. Jini™ is a

set of services and conventions built on top of RMI. In fact, the RMI Activation

framework includes an RMI Daemon (RMID) that, along with the Lookup Service, stores

information in logs. This is a characteristic as it ensures that they can continue from

where they stopped in the event of a machine or process failure. The RMID will

31 Java performs automatic garbage collection of memory to help return memory back to the system.
When an object is no longer used in the program (i.e., there are no references to the object), the object is
marked for garbage collection. The memory for such an object can be reclaimed when the garbage
collector executes. (Deitel, 2002, 426).

32 Multicast protocol is similar to broadcasting, wherein a sender sends to multiple receivers without
discrimination. Multicasting differs in that it does not send to every node on the network, but only to
interested nodes. For a more complete discussion of Multicast protocols, see Kumaran, 55-56.

78

remember how to activate the Lookup Service, and the Lookup Service will retain the

contents of its registry when the RMID is restarted. (Kahn, 2002, 10) Because Jini™ is

layered atop RMI it takes full advantage of the Java language, and the other benefits of

mobile code.

Jini™ has similarities to the Internet’s Domain Name Service (DNS); it even

provides a service for finding other services in a community. But Jini™ differs from

DNS in that it supports serendipitous interactions among services; that is, Jini™ allows

services to appear and disappear without the need for static configuration or

administration. This feature is termed “spontaneous networking.” The other important

difference is that services “close”33 to one another form a community automatically,

without the need for human intervention. Notably, the ability to operate across LANs is

limited due to firewall considerations. In a controlled environment, however, this should

prove to be incidental. That is, the interacting communities of interest will be in one

logical network from a security perspective.

Communities of Jini™ services are self-healing – a key property built into Jini™

from the ground up. Jini™ makes the assumption that networks and software fail over

time. Given time, the system will repair itself. Jini™ also supports redundant

infrastructure, reducing the possibility that services will be unavailable if key machines

fail. (Edwards, 1999, 59) The RMI Activation Framework provides a way for objects to

be automatically reconstituted from persistent storage.

These properties serve to reduce substantially the administration required for a

Jini™ community. Spontaneous networking means no manual configuration of the

network. Additionally, the ability to find and use devices previously unknown means

there is no need to install drivers or software. As presently designed, prior knowledge of

Jini™ service’s interface is essentially the only parameter that must be known prior to

using it.

Jini™ addresses scalability through federation. Federation is the ability for Jini™

communities of services to be linked together into larger groups – federations.

33 “Close” refers to LAN segments addressed. The multicast protocol used for service discovery may
be adjusted to alter the number LAN segments that are addressed; this effectively increases (or decreases)
the scope of service discovery.

79

Importantly, Jini™ is device-agnostic; that is, only the interface to the device

needs to be understood. In fact, the device or service does not need to be written in or

understand Java. Any programming language can be supported by a Jini™ system if it

has a compiler that produces compliant bytecodes for the Java programming language.

(Jini™ AO, 1999, 3)

Jini™’s ability to create spontaneous, self-healing communities of services is

based around five key concepts: Discovery, lookup, leasing, remote events, and

transactions.

Discovery is the process used to find communities on the network and join with

them. Dynamic discovery is responsible for spontaneous community building.

Lookup fulfills the role of a directory service within each community, and

provides facilities for searching and finding services. The lookup service reflects the

current members of the federation and acts as a central marketplace for offering and

finding services by members of the federation. It is more complex than a simple name

server that maps strings onto objects. The lookup operation can search based on the type

of object, and can consider inheritance relationships during the search. For example, if

one searches for “ground intelligence services,” the search may return both “supersets” of

ground intelligence services and “subsets” of ground intelligence services, and of course

ground intelligence services. As well, searches may be narrowly defined to return only

ground intelligence services. Services are found and resolved by a lookup service. The

lookup service provides the major point of contact between the system and the users of

the system. A service is added to a lookup service by a pair of protocols called discovery

and join – first the service locates an appropriate lookup service (using the discovery

protocol), and then it joins it (using the join protocol). The discovery/join protocol

defines the way a service becomes part of the Jini™ system. Many active lookup

services help increase fault tolerance of the system.

Leasing is used extensively in Jini™. A lease is a grant of guaranteed access

over a period of time. Leasing is the technique that provides Jini™ with its self-healing

nature. Leasing ensures that a community will, after a time, recover the loss of any key

services. If a service goes away, intentionally or not, its leases eventually expire and the

80

service will be forgotten. Access to many of the services in the Jini™ system is lease-

based. The lease interface defines a way of allocating and freeing resources using a

renewable, duration-based model. Leasing enables references to objects to be reclaimed

safely in the event of network failures. Jini™ makes extensive use of logs to checkpoint

service states periodically and to recover after a crash.

Remote events allow services to notify each other of changes of state. Service

state change notification events to clients may be asynchronous. Jini™ supports remote

event notification that enables event-based communication between services.

Transactions are a mechanism that allows computations that involve multiple

services to reach a safe state. That is, computations either completely succeed or are not

completed at all. This trait helps mitigate partial failures. Jini™’s transaction model

resembles the classical database transaction model.

We have referenced the notion of services throughout this section, but what is a

Jini™ service? A (Jini™) service is an entity that can be used by a person, a program or

another service. A service may be a computation, storage, a communication channel to

another user, a software filter, a hardware device, or another user. More interestingly, a

service may be an agent performing tasks on behalf of another agent or a human. In the

military domain, a service may be a ship that is able to transit into and out of Jini™

lookup Services automatically with no reconfiguration necessary. Likewise, a lookup

service may store object references to multiple ships, or multiple services offered by

various ships or other entities. Conversely, a service may be simply a printer, or

handheld device. Services are scalable in that they may represent the capabilities of a

military unit or platform, all the way “down” to a storage device or software agent.

Services appear as Java objects, perhaps made of other objects. These objects are proxies

that represent the actual service. The proxy may implement the service entirely (i.e., self-

contained service). Or the proxy may represent the service and communicate back to the

actual service via some protocol – not necessarily RMI. As Figure 20 below indicates, a

service item object captures the components that comprise a service; that is it contains an

interface (or proxy) which defines the operations that can be requested of that service, a

unique service identifier, and attributes that describe the service. (Jini™ AO, 1999, 12)

81

Service Item

Service ID

Proxy

Attribute

Attribute

Attribute

Figure 20. Components of a Jini™ Service Item (After: Edwards, 1999, 70).

Services in Jini™ are implemented using well known interfaces. This is the only

way services can know how to programmatically interact with each other. Using standard

interfaces ensures Jini™ services can take advantage of each other. Because services

expose interfaces, developers can design to the service interface, and not to each protocol.

Because interfaces are used to determine how to interact with a Jini™ service, the

implementation of the interface may change without “breaking” the larger interaction

between the service and the consuming clients. This characteristic provides a degree of

decoupling while promoting standard interface designs.

Although Jini™ is not a Web service34 in the conventional sense, it can

communicate with Web services, or be used to “house” or build Web services. In fact,

Web-enabled services will cause enterprises to run into the problems that are addressed

by Jini™ technology. Some of these problems include:

• Finding and connecting services on a network

• Creating reliable sets of services out of unreliable parts, including an
unreliable network

34 Web services are discussed later in this chapter.

82

• Dealing with networks that are very large or long-lasting

• Evolving parts of the service set without halting the service set itself at
any time

• Explosive growth in bandwidth, networks and digital devices is leading to
state where Web services will become smart because they are context-
aware and can be reliably delivered over multiple networks. Jini™ comes
into its own when participants within a network start looking for services
not just from other networks, but from the participants in the other
networks as well. (Jini™ EO, 2001, 9) Extensive use of the network to
execute workflow will inevitably lead to the occurrence of more failures in
the network. These failures will often be partial failures in that the failure
will cause a degradation that impacts a service, but doesn’t necessarily
shutdown a service. Jini™ provides a unique ability to handle partial
failures by requiring services to implement facilities that explicitly raise
remote exceptions, objects that allow a Java program to intelligently
respond to that failure. Jini™ is an instance of a Service Oriented
Architecture; it is protocol independent; supports dynamic community
formation and dissolution; is location independent; is self-healing; and it is
dynamic and self-managed. (Kumaran, 2001, xvi)

One of the seeming misconceptions of Jini™ some have is thinking of it as a Web

service. This line of reasoning leads one to ask why Jini™ has not gained traction as a

Web service. As stated earlier, it is not a Web service per se. We see utility for Jini™

and Web services working together. This idea is mentioned is the Web services section

of this chapter.

As mentioned earlier, Jini™ is well-suited for development and deployment of

autonomous agents; however, the Control Agent Based System (CoABS) is an extension

of Jini™ that not only manages services, it and provides an agent-based platform. As

such, discussion of CoABS will focus on the agent aspect of services. Additional

information about Jini™ can be found at http://www.jini.org and

http://www.javasoft.com/products/jini.

7. CoABS Grid

Selection of CoABS as an agent platform for our research was a logical choice for

us as it is closely related to Jini™.35 This helped reduce the learning curve and allowed

35 Other potential agent platforms exist. For example, JXTA (short for “juxtapose”, as in side by side)

is a set of open, generalized peer-to-peer protocols that allow any connected device on the network to
communicate and collaborate. (See[http://www.jxta.org]).

83

us to develop agents more quickly. The Control of Agent Based Systems (CoABS) Grid

is an extension of Jini™. It is built on top of the core functionality provided by Jini™.

The CoABS Grid Users Manual defines the CoABS Grid as middleware that integrates

heterogeneous agent-based systems, object-based applications, and legacy systems.36 It

also indicates that the CoABS Grid includes a message-based API to register agents,

advertise their capabilities, discover agents based on their capabilities, and send messages

between agents. CoABS Grid, being built on Java, enjoys the ability to execute mobile

code on heterogeneous platforms. Mobility is a key characteristic of a software agent.

Additionally, sending messages between agents, an implementation of persistent

asynchronous communications, enables loosely coupled interactions between and among

organizations of agents – another necessary characteristic of agents. Figure 21 is a

sample screenshot of the CoABS grid user interface. The pane depicted in the figure is

the Grid Status pane. It lists all agents and services registered in the local Lookup

Service, including Lookup Services themselves. In this instance, two Lookup Services

(SEMWEB, poweredge) are registered, along with four agents from the ArchAngel

project.

Figure 21. CoABS Grid Graphical User Interface.

36 The CoABS Grid is only part of the overall CoABS program [http://coabs.globalinfotek.com/].

& Grid Manager v4.Z.1 f- |,n.|x
Daemon

Sendees i

Conflgwatlon [Grid Status

6 Refresh i

lust View ^ I Sort by

f^ ArchAimel

t^ Lookup (poMeredoe)

(^ Lookup (SEMWIEB)

/^ RepeatBtoKer

^ RepeatHanctler

^Y RepealLlsteiier

Updated Thu Jun12 1 3:00:33 OMT-OaOO.

L3 Service
Q senncettem: net ilnl.cote.lookup.3eiviceltem@200ab9

□ servicelD: 4211 6fc3-fbti5-46f6-97fc-e7f6ad(t260ab

Q serviceOb)ect: com.globallnfotekcascisgrid D8f3ult^sntRep@l AtchAngel
9 L^Codebase

D : litlr "1 31.1 20.51.132:9090larla-(tl lar

Q : littp in 31.1 20 51.132:9090IulaRi100 zip

Q : nnpin 31.1 20 51.1 32:9090I
9 II^Anribules

9 L3 cam.glabalinToleK.coabsorld.entry.CoABSAoem[>esctlptlon
9 L^acls

Q acis: plain

Q acis: repeat
9 L3 conlentLanouages

Q contentLanguages: plain teift
9 L3 ontologies

Q ontologies: archanflel

D servicelD: 4211 6fc3-fbP5-46f6-97fc-e7f6afl(t260ab

[i name: ArchAngel

Q description: Provides contact information for ArchAnoe! Team.

Q organization: Naval Postgraduate School

Q architecture: ArcnAngel

Q document at I onURL: httpsi/Ipoweredee.nps.navy tnll'route

Q dIsplaylconURL: http /'poweredge.nps na-iy mil SOBOIArdiAnoelLOBO ipg
c L3 com.globallnfotek.coabsgrlit.enliyJilsiAgenlRepLJIDescriptot
®' L3 net.iini.loohu p. entry-Name
^' L3 net.iini.loohu p. entry,Service Info
9 Q cam.glaballtrfaIeh.coabsgrid.entry.GridSefvlceType

Q name: ArchAngel

Q desctlpllon: Provides contact information for ArchAnoel Team

Q dIsplaylconURL: ntlp;rpoweredge.nps na\vmil 80SO;ArcnAnselLogo jpg

84

The CoABS Grid is the infrastructure that connects components together. The

Grid can also be thought of as the infrastructure layer and all the agents and services

running on it. (Kahn, 2002, 15) As stated, CoABS Grid is built using Jini™; however,

the Grid provides helper utility classes that are local to an agent and that shield the user

from the complexity of Jini™. (Kahn, 2002, 15) The programmer is still able to use

Jini™ classes directly if desired. The concept of a service is represented as an agent in

CoABS. In fact, agents and services may be developed in CoABS; the difference is that

services are method-based; whereas agents are message-based. More specifically, clients

engage and interact with services by making calls on the service’s available methods.

Whereas, agents send messages to each other using the uniquely identifying attributes,

such as the agent’s “name.” Similar to the search for services described earlier, if one

desires to find a variety of agents satisfying stated criteria, one may initiate a search

accordingly and all available agents matching the criteria will be returned. The calling

agent is then able to interact with one or more of the agents returned. Similarly,

messages can be sent to a group of agents. The Grid uses the Jini™ Lookup Service to

register and discover agents - and services.

The Grid is transport neutral in terms of agent communication. RMI is the default

transport for messages. Message queues are implemented to store messages and

(message) listeners are implemented to automatically notify agents of incoming

messages. Although several classes of messages are provided in the Grid, some of which

contain text only while others may contain data attachments, the Grid does not specify a

language for agent communication. Developers must implement preferred agent

communication languages. (Kahn, 2002, 17)

A primary goal of the Grid is to integrate agent, object, and legacy systems.

(Kahn, 2002, 20) Integrating legacy systems is one of the main benefits of using the

Grid. (Kahn, 2002, 55) Legacy code can be wrapped using the Grid classes. Moreover,

the use of Java and XML as underpinning technologies enables greater interoperability

with legacy systems.37

37 The notion of legacy systems may fade into history as XML- and Java-related technologies

proliferate.

85

In summary, the CoABS Grid extends Jini™ technology and seeks to reduce

complexity. Using the Java programming language and the RMI Activation Framework,

the Grid helps us to realize the concepts of autonomous, software agents. Figure 22

illustrates how these technologies build upon each other. Java provides mobility and

flexibility; Jini™ provides spontaneous networking, and automatic discovery of self-

healing agents and services; and asynchronous messaging provided by the CoABS Grid

decouples processes, and supports autonomy and communications. Using the CoABS

Grid, agent architectures may be created and enhanced to form intelligent agent societies.

The ability for agents or services to enter and exit from the architecture with no human

intervention also contributes to autonomy, and reduces, or arguably eliminates, the need

for system administration.

Figure 22. CoABS in Relation to Other Technologies.

8. Challenges in Distributed Computing

• CORBA, RMI, and DCOM are successful at integrating application in a
homogeneous environment within a Local Area Network. Cross-network
solutions are necessary.

• Maintenance of stubs and skeleton is extremely complex in a
heterogeneous environment.

CoABS

Jini™

RMI

Java

86

• Quality of Service (QoS) goals like scalability, performance, and
availability in a distributed computing environment consume a major
portion of an application’s development time.

• Interoperability across heterogeneous platforms is almost impossible.

• Most distributed computing solutions work well within a LAN, but are not
very firewall friendly or accessible over the internet.

• Latency and network failures cause different problems than seen in local
processes.

B. WEB SERVICES

In as many publications that describe Web Services there are as many definitions

of Web Services. IBM offers this definition:

A Web service is an interface that describes a collection of operations that
are network accessible through standardized XML messaging. Web
services fulfill a specific task or a set of tasks. A Web service is described
using a standard, formal XML notation, called its service description
[WSDL], that provides all of the details necessary to interact with the
service, including message formats (that detail the operations, transport
protocols, and location.

Our research demonstrates that while one can ascertain there is broad agreement

on what Web services might be, there is no single, agreed-upon definition. This

ambiguity may be attributed to the opportunities yet to be exploited, as well as the

relative immaturity of the technologies. That is to say, we are only at the beginning of

conceptualizing and realizing the potential of Web services.

We offer the following definition of a Web service. “A Web service is a

distributed computing application that programmatically executes atomic or composite

workflows over the network.” Web services are essentially about exposing software

functionality over the internet. Some known attributes of Web services are less brittle

applications, greater flexibility in connecting heterogeneous systems, firewall-friendly,

loosely coupled, and greater interoperability. Web services are loosely coupled in the

sense that local services retain their unique characteristics while demonstrating the ability

to communicate with other systems. Communication between systems may be

synchronous, such as the classic client/server request/response model wherein requests

must be answered before software processes may continue; or they may be asynchronous

87

wherein messages sent from one entity may go unanswered indefinitely yet processing

may continue. Greater flexibility is also manifested in the ability to interconnect

applications written in various languages such as Java, C, C++, and Visual Basic and so

on. Web services contribute to at least three dimensions of interoperability. For

example, Java Web services separate the programming language from the operating

system; XML separates data from software; and Web services separate collaborating

computer systems, or distributed applications.

Web services are the current phase in the progression of distributed computing,

and are based on XML standards and internet protocols. Potential military applications

are abundant. The ability to communicate with intra- and inter-Service systems, other

DoD systems, as well as systems outside DoD, and to allied systems on the data layer is

invaluable. Using open standards like XML and derivative technologies, virtually all

systems, legacy and new, will be able to work together as agile, coherent distributed

applications.

Web services consist of Application-to-Application (A2A) functionality.

Employing platform neutral, open standards Web services interface underlying

application components. Web services increase data sharing and A2A interaction without

human intervention. Web services are based on the concept of Service Oriented

Architecture (SOA).

Web services based on XML standards can be developed as loosely coupled

application components using any programming language, any protocol, or any platform

(See Figure 23). This greatly eases delivery and consumption of services as anyone using

any platform and programming language may access exposed services. The core XML

technologies employed for current Web services include Simple Object Access Protocol

(SOAP), Web Service Description Language (WSDL), Universal Description, Discovery,

and Integration (UDDI). Business-to-Business (B2B) communications have occurred for

some time now; however, they were based on proprietary, brittle technologies.

Accordingly, scalability of these systems was reduced and very complex.

88

Subscriber

XML

Broker

XML

Publisher

XML

Internet

Figure 23. XML for Encoding Distributed Communication (After: Nagappan, 2003,

25).

The basic characteristics of Web services include being based on XML messaging

between entities; provision for cross-platform integration; can be built in any language

such as Java, C, C++, Perl, Python, C# and Visual Basic. Web services are not intended

for handling presentations like HTML. They are based on industry standards like simple,

ubiquitous HTTP, and may be easily accessible through firewalls. Web services can be

accessed by many types of clients and vary from simple to complex. All major platforms

like J2EE, CORBA and Microsoft .NET provide extensive support including open source

implementations. Web services can be dynamically located and invoked from public and

private registries based on industry standards such as UDDI.

Web services’ limitations include the following. They are location specific; that

is, a client must be pre-wired with the location of the naming/directory service. They are

89

protocol-dependent; that is, they employ three distinct protocols (SOAP, WSDL, and

UDDI). Additionally, some argue Web services are moving quickly toward over-

specification and over-complication. [http://judy.jini.org] They are tightly coupled in the

sense that a client should be modified or upgraded when the service provider’s interface

changes. UDDI is a static service broker, and the current Web services model does not

allow dynamic deployment of resources and mobile code, only mobile data. (Kumaran,

2001, xv) As well, they do not address the eight fallacies described earlier.

[http://judy.jini.org]

1. Basic Operational Model

Service
Broker

Service
Requestor

Service
Provider

Disc
ov

er
Serv

ice

Invoke Service

Register Service

Figure 24. Web Services Operational Model (From: Nagappan, 2003, 27).

As depicted in Figure 24 above, Web services consist of three distinct roles:

Service Providers, Service Brokers, and Service Requestors. Service Providers are

responsible for developing and deploying Web services. Providers also define and

publish services with a Service Broker. Service Brokers, also commonly known as

service registries, are responsible for service registration and discovery. Service Brokers

list various types, descriptions and locations of the services that assist Service Requestors

90

in finding and subscribing to desired services. Service Requestors are responsible for

service consumption. A Service Requestor locates a service using a broker, invokes the

service, and executes the service from the provider. Interestingly, the Web services

operational model maps closely to the Jini™/CoABS model. Figure 25 diagrams the

model used in Jini™/CoABS. A casual observation reveals the operational similarities

between Jini™/CoABS and Web services.

Lookup Service

Client

Service

1. Client downloads proxy object
to access service

2. Client uses the proxy to
communicate with the service

Proxy

Service Item

Service
ID

Proxy

Attribute

Attribute

AttributeService Item

Service
ID

Proxy

Attribute

Attribute

Attribute

Figure 25. Jini™/CoABS Operational Model (From: Edwards, 1999, 14).

In fact, in at least one test to compare Jini™ and Web services, Jini™ consistently

outperformed the Web services (UDDI) in terms of speed, network traffic produced,

memory consumption, and scalability.38 (Schwagli, 2002) Despite these interesting

results, we see different uses for Jini™ and (Semantic) Web services. That is,

Jini™/CoABS provide a control mechanism and “plumbing” apparatus for autonomous

agents (i.e., mobile code); whereas, SWEB services will represent the “small worlds” in

38 The significant differences in the performance of Jini™ versus Web services may largely be
attributed to the fact that Jini™ downloads objects; whereas, Web services are data-stream centric. The
transmission of relatively large text across the network requires comparatively more time and bandwidth.

91

which our agents will interact to return meaningful information. Put another way,

Jini™/CoABS provide the infrastructure for Knowledge Acquisition (KA) and SWEB

services provide the constructs for the Knowledge Representation (KR) of the service.

The core technology of [current] Web services is XML. XML is manifest

primarily in three derivative technologies called SOAP, WSDL, and UDDI. SOAP is a

standard for a light weight XML-based messaging protocol. SOAP enables

decentralized, distributed communications between two or more participating

applications. SOAP is independent of platform, operating system, language or device.

SOAP messages may be bound to various internet protocols such as HTTP, SMTP, and

FTP. The fact that SOAP is designed to be transmitted over HTTP, unimpeded by

firewalls39 and into places binary protocols such as IIOP, ORPC, and JRMP can’t go

provides an advantage over other remote procedure protocols. SOAP can be used in

synchronous and asynchronous modes of communication. (Moczar, 2002, 373) As

SOAP is based on XML, it is extensible. This characteristic accommodates future

development and reduces the likelihood of vendor lock-in. SOAP as an XML technology

is able to represent abstract data types and so map them between various programming

languages. Although there is solid consensus in the industry about the core capabilities

of SOAP, there is considerably less agreement on how high-level issues such as security

and transaction-management should be addressed. (Graham, 2002, 120) The SOAP

specification is available at http://www.w3c.org/TR/SOAP/.

WSDL is an XML derivative technology for describing the network services and

their access information. A WSDL service description is an XML document that

conforms to the WSDL schema definition. WSDL defines a binding mechanism used to

attach a protocol, data format, an abstract message, or a set of endpoints defining the

location of services. WSDL is used as the Web service meta-language describing how

service providers and consumers communicate with each other. A WSDL document is

not a complete service definition, but rather it covers the lower level details of the service

– the raw technical information of the service interface. WSDL is an interface definition

39 Currently, Web services exchange communication using HTTP over the standard web port (port

80). As such, SOAP messages appear to the firewall like any other HTTP request/response; and are
therefore allowed through – assuming the firewall allows HTTP service on port 80.

92

language; that is, as IDL is to CORBA, WSDL is to Web services. (Graham, 2002, 322)

WSDL describes the Web service functions offered, location of Web services (e.g. a

URL), and how to access the Web service. WSDL-based information is usually stored in

a registry, though not required.

Recalling the beginning of this chapter, we stated that one must be able to find the

required information sources, understand how to interact with them, make the appropriate

requests, and be able to access the results of our requests. A WSDL document supports

these goals by describing three fundamental properties of a web service: what a service

does – the functions (methods) provided; how a service is accessed – details of the data

formats and protocols necessary to access the service’s operations; and where the service

is located – details of the protocol-specific network address, such as a URL. In the

Jini™/CoABS models, the WSDL is similar to the “well-known” interface. Although

these tell us where to find the service(s), their existence to begin with must be known or

discovered. Both of these methods are aided by a discovery mechanism. Jini™/CoABS

services and agents discover then join Lookup Services which store and index service

items. Clients discover then query Lookup Services for the needed service or agent.

Web services are discovered by finding and querying a registry, namely a UDDI registry.

The WSDL specification may be viewed at http://www.w3c.org/TR/WSDL/.

Universal Description, Discovery and Integration defines the standard interfaces

and mechanisms for registries intended for publishing and storing descriptions of network

services in terms of XML messages. UDDI is similar to the yellow pages, or a business

telephone directory. Web service brokers use UDDI as a standard for registering the

Web service providers. Web service requestors locate services by communicating with

UDDI registries. Web applications interact with the registries using SOAP messages.

The scope of registries can be private local area networks all the way to the global, public

Internet. The UDDI Working Group includes leading corporations like Sun

Microsystems, Microsoft, HP, SAP, and Oracle. More information about UDDI is

available at http://www.uddi.org.

Where UDDI implements XML to connect service requestors (clients) and service

providers (services), Jini™/CoABS uses the Java programming language to implement

93

description and discovery. However, Jini™/CoABS can implement the mechanisms used

by XML Web services as well. The communication protocol used by the service item

stored in the Lookup Service is orthogonal to the Lookup Service itself. That is, the

Lookup Service is agnostic to the service’s (or agent’s) “backend” communication

protocol(s). Accordingly, Jini™/CoABS could serve as a useful interface to Web

services. Both of these methods require prior knowledge of the service; however, this is

not entirely a disadvantage. Being required to have foreknowledge of the service and

how to interact with it strengthens the legitimacy of the engagement of the service.

2. Known Challenges to Web Services
Three known challenges to successful implementation of Web services include

distributed transactions, Quality of Service, and security. If distributed transactions with

heterogeneous resources are required, then it should be studied and tested with standard

solutions. For mission critical systems, service providers must examine reliability and

performance of the service under peak loads and uncertain conditions for high

availability. Factors such as load balancing, fail-over, and fault tolerance must be

resolved. Military Web service applications must be thoroughly tested prior to

deployment to ensure acceptable performance standards. Web services are a promising,

but immature technology. Web services are exposed using simple and ubiquitous HTTP-

based protocols. Therefore, Web services must be implemented with authentication,

integrity and authorization mechanisms using secure SSL-enabling and message

encryption technologies. (Nagappan, 2003, 32-33)

Some key benefits of employing Web services include the following:

• Web services provide a simple mechanism for applications to become
services that are accessible by anyone, anywhere, and from any platform.

• Web services define service-based application connectivity facilitating
intra- and inter-enterprise communication.

• Web services enable dynamic location and invocation of services through
service brokers (registries).

• Web services enable collaboration among legacy applications.

94

Despite the significant advantages and features Web services offer, they can be

improved. SWEB services can be implemented to extend the current functionality by

enabling agents to execute Web services functionality currently executed by humans.

C. SEMANTIC WEB SERVICES

The Web services model discussed so far is a centralized model. That is, a well

known repository (UDDI) is implemented to provide brokerage services for Web service

providers (services) and requestors (clients). In this construct service brokers are central

to the architecture. As Web services become increasingly sophisticated, brokers will

contain varying levels of built-in intelligence, allowing them to learn from transactions;

and therefore, they will be empowered to provide better brokerage services. The current

WSDL and UDDI technologies are sufficient for design time (static) browsing, and some

limited instances of runtime (dynamic) discovery of services. In other words, the human

finds the WSDL for a Web service and then develops the client accordingly. However,

the next step in description and discovery of Web services must go beyond manual,

syntactic discovery and incorporate a layer of intelligence and semantics for true

dynamic, human-independent interoperability.

The maturation of existing technologies combined with emerging technologies

will lead to further variation in Web services. Accordingly, the ability to effectively

operate within this environment will necessitate more agile, more intelligent systems.

For example, what protocols will entities use to negotiate transactions? How will entities

ensure they are sharing a common language; and the terms used convey a common

meaning? How will actors prove their identity? The mechanisms previously discussed

help to answer some of these questions; however, more advanced technologies such as

the Web Ontology Language (OWL) offer possible solutions to answer more of them.

As previously stated, the current web is designed mostly for human consumption.

The SWEB will provide context and meaning in a machine-readable way that will allow

machines to understand information stored in the computer. The semantic representation

of information will result in much greater levels of interoperability, rich searches,

automatic service discovery, and greater task automation. SWEB technologies are

closely related to Web services technologies and will eventually converge. (Graham,

95

2002, 529) The current WSDL description and UDDI taxonomies are intended for

human readers to browse. Web service descriptions and registries incorporating

ontologies to provide semantics can be machine readable, enabling automatic discovery

and invocation of services by software through common terminology and shared

meaning. Table 4 from IBM summarizes the differences between SWEB services and

current Web services.

Dimension “Traditional” Web

Services
Semantic Web services

Service Simple Composed
Requestor Human Machine
Provider Registration No registration
Broker Key Player Facilitator
Service description Taxonomy Ontology
Descriptive elements Closed world Open world
Data exchange Syntactic-based Semantics-based

Table 4. Dimensions of Web Services Compared (IBM).

The notion of description and discovery will persist; however, the manner in

which these are achieved will change. Specifically, agents embedded with requisite

ontological information will be able to discover and consume SWEB services unassisted

by humans. This scenario underscores the intersection, and cooperation, of

Jini™/CoABS and SWEB services. Jini™/CoABS will deploy and control agents and

societies of agents [KA] that will interact with and consume information accessible via

SWEB services [KR].

1. Approaches to SWEB Services
Differing views for how to develop SWEB services exist. Three different

approaches to SWEB services described to date include embedding ontological markup

within the WSDL; mapping the Web service ontology to the corresponding WSDL; and a

different, more expressive methodology termed DAML-S.40

40 DAML is being superseded by a W3C standard called Ontology Web Language (OWL).

Accordingly, OWL-S will be used in this document instead of DAML-S.

96

a. Mapping Approach
One recommended methodology for enabling SWEB services describes

mapping an ontology to a Web service WSDL, and is the first case described.41 In this

approach it is argued that current Web services are developed for internal enterprise use;

and that most existing implementations are experimental and provide highly focused

functionality. Further, for applications where all users are within the same enterprise,

manual discovery and coding of clients is the most efficient approach. However, unless

the Web service’s client knows the exact form and meaning of a service’s WSDL in

advance, the combination of UDDI and WSDL and coarse-grained operations

descriptions is not enough to allow fully automated service discovery and usage.

Currently, semantic confusion occurs which increases the difficulty of

accessing and consuming a Web service. Semantic confusion arises from inconsistencies

that occur in several ways. These include poorly defined semantics, shared syntax but

different semantics, and shared semantics but different syntax. These problems often

combine and result in overlapping and conflicting syntax and semantics. Poorly defined

semantics manifest as unstated service meanings which must be guessed or interchanged

by human actors. Without sufficient semantic descriptions, the service is largely

unusable by consumers other than the original developer (provider). Shared syntax but

differing semantics can cause confusion between services. This causes problems when a

client is coded to use one service, but tries to use another service with different

semantics. In this case, as long as the syntax is the same, the call to the service will

succeed, but it will return unexpected results. In addition to knowing the correct syntax,

the functionality offered by the service must be understood. Even where a WSDL is

available, semantics are not expressed precisely in the service interface alone, but must

be learned by the (human) developer working on the client. Likewise, two Web services

may share similar semantics (functionality) but different syntax. Where this occurs, it is

often easy to convert between the two services. However, this is only possible if the

meaning of all input and output parameters are understood precisely.

41 The following discussion is a summary extracted from an article written by Joram Borenstein and

Joshua Fox titled “Semantic Discovery for Web Services,” published in the Web Services Journal, April
2003 issue.

97

To solve these problems, a semantic methodology for dynamic discovery

and interoperability of Web services must be implemented as part of the overall Semantic

Web vision. The key ingredient of the semantic approach is the formal capture of the

Web service’s interface by reference to an agreed-upon business-oriented vocabulary

(semantic model). Further, the vision of the Semantic Web is best implemented with

Web services. Our position is that a universal vocabulary is not feasible, even within the

military context where structure and formalism is typically greater than commercial

systems. We promote the concept of “small worlds” gradually converging based on

adaptive techniques, and emerging relations between clients and subscribers. More

specifically, we encourage individual units or organizations to build ontologies to satisfy

local requirements in agreement with customers. We also recommend lightweight, more

easily alterable, modular ontologies that can be readily embedded into software agents for

travel across the network. OWL provides facilities for extension and flexibility to

capture new concepts and emerging/changing terminologies. For instance, an operational

unit may communicate using one set of semantic constructs with its supplier(s), and a

different construct with its customers, yet they both may involve the same or similar

information. The ontology may be readily adapted to consider the varying terminologies.

This is not to suggest that standards be ignored; it simply acknowledges differences will

exist, and it emphasizes the ability to adaptively interoperate with varied interests.

For a service to be used, the provider must tell the client what the service

“means,” and the client must understand what it means and adapt to the service interface.

If this requirement is met at a low level and gradually extends as required, semantic

interoperability will be achieved on a large scale. This behavior is akin to emergence;

wherein, utility and organization manifests over time according to small-scale interests

and needs.

The solution proposed requires the service provider use an ontology to

model the real-world concepts related to the service’s functionality; create a WSDL

document for the Web service; map elements of the WSDL messages to the semantic

concepts defined in the ontology, saving mappings in RDF; finally, register the semantic

98

model, WSDL, and RDF mappings to the UDDI registry. The role of the service

provider is to formally represent the service’s semantics in a machine-readable way in a

UDDI registry.

In this approach, the semantic model (ontology) represents the meaning of

the service’s functionality. Where heterogeneous semantic models must be reconciled,

they can be integrated by merging them into a larger model that includes synonymous

classes and properties. With formal semantic models in place, as long as the service’s

functionality is encoded in the ontology, syntactic differences can be readily overcome

using XSLT transformations to convert between syntaxes. Additionally, in this approach,

the ontological model does not yet represent the service itself; however, it does represent

the critical concepts necessary to understand the service’s functionality.

After creating the ontology, the provider creates the WSDL which defines

the service’s syntax by specifying the structure of the input and output messages, along

with aspects of the service’s runtime bindings (e.g. HTTP). The next stage is to express

the meaning of the WSDL by mapping operations, along with the schemas of the WSDL

input and output messages, to the semantic model. Mappings from the ontology to the

WSDL can be expressed in an XML document formatted in RDF. RDF is built on triples

expressing a relationship in the form of subject-predicate-object. For example, we might

express a mapping as (WSDL element) “serial” (subject) “maps to” (predicate) property

“identifier” of class Item (object).

The consumer’s role in semantic discovery would be to identify the

required functionality; query UDDI, locate the service, and retrieve all semantic and

interface definitions; create transformations as needed for the client; and access the Web

service using the WSDL document. To identify the required service functionality, the

service requestor first discovers the agreed-upon semantic model (OWL ontology) using

UDDI and loads it over standard HTTP. The semantic model, even if not standardized, is

general enough to describe a wide variety of services for a given industry sector. Where

multiple “standard” models exist, they may be linked together through ontological

properties and inheritance to form a larger more inclusive model.42 After the client

42 Linking of ontologies and/or ontological concepts is difficult and remains a research area.

99

identifies the relevant ontological concepts in the semantic model, it navigates the

mappings that link the semantic model to the WSDL files. The client identifies the

semantic values in the model and uses the mappings to find identifiers for the services

that provide the needed functionality.

Finally, the client must create transformations to use the service. The

client may expect a different syntax than is implemented by the service. However, this

problem can be resolved through semantics. In a simpler, but manual approach, a

transformation from syntax to syntax is possible using XSLT. However, using semantics

the meaning of a service’s parameters is clear and transformation code is easy to develop.

In fact, in a somewhat more complex application, XSLT transformation may be generated

automatically to convert between XML schemas based on the shared semantics. With

semantics described and mapped to a WSDL, and transformations in place, the service

requestor can invoke the Web service directly just as with any WSDL.

This approach is conceptual and no known implementations exist. It is

one possible approach to SWEB services. While we conclude this solution will work, it

may not be ideal in that it essentially “bootstraps” a previous technology to a newer one.

Given the fact that “traditional” Web services are hardly ubiquitous, we would

recommend the military adopt a semantic, ontologically based structure from the ground

up. The relative structure that exists within the military domain affords it the opportunity

to be a key early adopter of “native” SWEB services. Another approach we encountered

was to embed semantic mark inside the WSDL.

b. Semantics Embedded in the WSDL
The next approach adds semantics to the WSDL using DAML+OIL43

ontologies. It also uses UDDI to store semantic annotations from the WSDL and to

search for Web services based on them. One of the goals of semantic enabling of Web

services is to automate discovery of Web services. As before, the main inhibitor to this

capability is the lack of semantics in the discovery process and the fact that UDDI does

not use service description information in the discovery process. Although they assert

43 DAML+OIL has been subsumed by OWL. All references to DAML+OIL in the original report are

replaced by references to OWL, implicitly and explicitly.

100

that the key to semantic discovery of Web services is having semantics in the description

(WSDL) itself, and then using semantic algorithms to find the required services, we do not

necessarily agree. We view this as another bootstrapping technique that attempts to

“bring along” the “traditional” system. Again, Web services are relatively new, so

adopting thoroughly semantic structures from the beginning will prove to be more agile

in the long term.

An approach for SWEB service discovery is to possess the ability to

construct queries using ontological concepts in a domain. This requires mapping

concepts in Web service descriptions to ontological concepts. This is conceptually the

same as the previous technique; wherein, semantic concepts were mapped to appropriate

WSDL elements using the RDF. However, in this approach, WSDL concepts are related

to OWL ontologies inside the Web service description; that is, in the WSDL document.

This technique involves extending the WSDL document to include semantic concepts,

thereby enhancing existing industry standards and retaining backward compatibility.

Unlike the previous methodology that suggested no change in the UDDI

would be necessary, this approach aims to provide semantic discovery by using UDDI to

store semantic information about the Web service. Additionally, an interface is provided

to construct queries which use that semantic information.

Semantic annotations added in the WSDL and in UDDI are aimed at

improving discovery and composition of Web services. A three phase algorithm for

SWEB service discovery which requires the service requestor to enter Web service

requirements as templates constructed using ontological concepts is presented. In the

first phase, the algorithm matches Web services based on the functionality (operations)

they provide. In the second phase, the result set from the first phase is ranked on the

basis of input and output concepts of the Web service operations and the input and output

concepts in the requestor’s template. The optional third phase involves ranking based on

the effects.

In summary, this method recommends annotating WSDL constructs with

OWL ontological concepts. The designers argue that their approach has the advantage of

being an ontologically-based approach that fits better with existing industry standards,

101

without requiring creation of a new infrastructure. The authors indicate that their

methodology also contributes to using the extensibility feature of WSDL to add

semantics to service descriptions; and to using UDDI data structures to represent

grouping of operations with their inputs and outputs.

In our estimation, this approach is useful in that it is a natural progression

in the maturation of Web services, and it does not lose backward compatibility already

existing in current Web service implementations. However, our research and experience

with semantic concepts suggests separating the ontological concepts from other

documents to retain modularity, and thus, flexibility. In fact, depending on the scope of

the Web service we would recommend the ontology itself be modular and consist of

multiple ontology documents. Additionally, as suggested, we recommend the military

adopt SWEB service concepts from the onset. WSDL and UDDI stop short of automatic

discovery and invocation. They do not readily accommodate composite workflows.

Based on our research, we see current Web services performing more singular, atomic

processes – with human interaction.

c. Implement DAML-S/OWL-S
The third approach we describe for constructing a SWEB service is

derived from a report titled DAML-S: Semantic Markup for Web Services. (Ankolekar,

2003) As part of the DARPA Agent Markup Language (DAML) program, an ontology

of services called DAML-S has begun development. Actually, DAML-S will be replaced

by OWL-S and will be referenced instead of DAML-S; however, they are quite similar.

The aim of this effort is to allow human users and software agents to discover, invoke,

compose and monitor Web resources offering particular services and having particular

properties. We assert that the OWL-S model will enable these functionalities. The effort

described in the report is a collaborative effort between BBN Technologies, Carnegie-

Mellon University, Nokia, Stanford University, and SRI International. An important goal

of OWL-S is to allow agents to use a Web service automatically. To enable this to occur,

the agent requires a machine-readable description of the service. This requirement is

common across all SWEB service models.

102

There are four primary tasks that OWL-S is expected to enable: Automatic

Web service discovery; automatic Web service invocation; automatic Web service

composition and interoperation; and automatic Web service execution monitoring.

Currently, discovery is performed by a human who might use a search engine to find

candidate services, select the most appropriate service, develop a client, and finally

consume the service. OWL-S is expected to automatically discover the service through

computer-readable semantic markup, and a service registry or ontology-enhanced search

engine; or a service can be exposed in OWL-S with service registry, so that requestors

can find it during the service search phase. Having automatically discovered a Web

service, a software agent should be able to automatically invoke the Web service. Instead

of a human “completing a form” and submitting the required data to the service provider,

the agent could be delegated the task of executing the necessary functions of the Web

service. In this way the human becomes further removed from the process. Provided

with the overarching goals, a given task may be automatically performed. To accomplish

this, the OWL-S model would encode the information necessary to select and compose

Web services at the service site. To allow service consumers the ability to monitor the

status of their service request, OWL-S will provide automatic Web service execution

monitoring.

In the OWL-S paradigm, the class Service is the top level class in a

taxonomy of services, and its properties are normally associated with all kinds of Web

services. An ontology of services is specified to describe three essential types of

knowledge about a service. An ontology by its very nature is intended to describe the

meaning of something; that is, it is a specification of a conceptualization. To that end, an

ontological framework should be devised to answer certain questions about a given

conceptual domain. In the context of Web services the OWL-S ontology for services

seeks to answer three questions:

What does the service require of the user(s), or other agents, and provide

for them? OWL-S answers this question in the service “profile;”44 so the class Service

presents a ServiceProfile.

44 “Profile” is also known as a service capability advertisement (K. Sycara, 1999).

103

How does it work? OWL-S gives this answer as the service “model;” so

class Service is describedBy a ServiceModel.

How is the service used? OWL-S answers this question as “grounding;”

so the class Service supports a ServiceGrounding.

The properties presents, describedBy, and supports are properties of the

class Service. The classes ServiceProfile, ServiceModel, and ServiceGrounding are the

respective ranges of those properties. The service profile tells the agent seeking a service

what the service does so the agent can determine whether or not the service meets

requirements. The service model tells how the service works, or what happens when the

service is executed. Finally, the service grounding specifies the details of how an agent

can access a service; for example, the grounding specifies the service’s communications

protocol. The ServiceProfile provides the information needed for an agent to discover a

service; and together, the ServiceModel and ServiceGrounding service objects provide

information for the agent to make use of a service. Figure 26 depicts the top level service

ontology.

Resource

ServiceProfile

Service

ServiceGrounding

ServiceModel

provides

describedBy

presents

supports

What the service does

How it works

How to access it

Figure 26. Top Level of Service Ontology45.

45 [http://www.daml.org/services/daml-s/0.9/daml-s.html]

104

In our estimation, the OWL-S model essentially separates the Web service

functions described in the WSDL document into the ServiceProfile and

ServiceGrounding ontological classes. The ServiceModel, to a lesser extent, represents a

portion of the WSDL as well. The OWL-S report acknowledges that the ServiceProfile

and ServiceGrounding classes present the industry standards functionality (i.e., the

WSDL). However, we agree that the ontological markup like that demonstrated in OWL-

S is essential to enable richer queries and further automation. The OWL-S process would

certainly enhance a Web service’s functionalities

We believe ontological markup that enables machine-readable

representation of information is essential to Web services and KR. Of the three

approaches discussed in the research, the modular approach of mapping a service

ontology to a WSDL causes the least upheaval for existing Web services. We conclude

that modularity supports increased flexibility for future development efforts. The second

approach, which embeds the ontological markup inside the WSDL, we argue decreases

flexibility and increases the brittleness of the service. Additionally, it asserts that the

Web service broker component needs no changes. Significantly, we contend that the

UDDI should include semantic markup as well. The OWL-S concept appears to provide

a potentially useful solution, and is the recommended approach for new Web services

development. In summary, an approach that provides semantics, is modular, and extends

or enhances current standards seems most beneficial.

D. SUMMARY

So what does all this mean? How does the military use these technologies

effectively, and for what purposes? If we accept the premise that the paradigms

described represent the progression of distributed computing, we can make some

significant observations and infer some utility that may be derived. One observation is

that the most “advanced” model described in the list, CoABS, still heavily uses the

client/server model by sending executable code between Lookup Services and requesting

clients using simple HTTP servers. In fact, arguably, all current distributed computing

models to date are client/server models (Booch, 2001, 36)

105

Another observation is that all complex workflows can be reduced to discrete

atomic steps. SWEB services can be implemented to describe and execute complex

organizational workflows with little or no human involvement. Interchanges between

military commands can be accomplished automatically using SWEB services and

autonomous agents. This can potentially increase the military commanders’ decision

rates by getting the right information at the right place sooner and more reliably.

We also conclude that Jini™/CoABS are forms of a web service. In fact, we can

describe Jini™/CoABS as a Service Oriented Architecture. The Lookup service is

somewhat synonymous to the UDDI registry in that it contains a list of all available

services (and agents). It allows potential clients to lookup and access services, and

allows agents to send messages between each other. For instance, a service client sends a

query to the Lookup service; the lookup service finds the service, or services, that satisfy

the query request and returns the proxy to the requesting client. Similarly, in the web

services model the service requestor uses the UDDI to find a service; then the service

requestor (client) consumes the service from the provider.

But Jini™/CoABS give us more. It not only provides the UDDI functionality but

it provides automatic service discovery and joining. It also provides a leasing facility

which purges failed services automatically and provides a self-healing characteristic.

Within Jini™/CoABS we not only enjoy service discovery and invocation, we also

realize messaging and agent functionality (i.e., mobile code). The CoABS Grid provides

a well-defined environment within which the military community may interact. Services

may enter and exit the system automatically, without disruption to the larger system.

Additionally, SWEB services can be dynamically listed, found and consumed

from within CoABS. Although RMI is the default transport mechanism for executable

code, and performs well, it is certainly not required. SOAP over HTTP as used in the

XML Web services paradigm may also be used in Jini™/CoABS.

In addition to providing a container for sharing services, CoABS implements a

message queue system. This is similar to the message oriented middleware model and it

allows services to be extended to agents. The agents are essentially services that

106

implement a message queue. So we can infer that CoABS is an instance of a Service

Oriented Architecture combined with an agent system. Semantic messaging will allow

more sophisticated agent communication to occur – further enhancing their utility.

Jini™/CoABS are limited in automatic discovery however. Specifically, a service

item is described by a unique identifier that distinguishes it among services, a well-

known interface that tells a client what it does how to interact with it, and a collection of

attributes that describes the service. In some ways, this concept may be mapped to the

WSDL in that it contains identifying information about the service and how to interact

with it. Clients may use any combination of these characteristics to search for services or

agents that meet specified criteria. However, this implies that the client has prior

knowledge of the service or agent. That is, it has the service’s or agent’s well-known

interface. In the case of agents, the well-known interface is used system wide. Still, the

specific agent required must be isolated among all other agents present. Services also

provide a well-known interface; however, the specific services provided are unique and

varied. The crux of Jini™/CoABS is prior knowledge is required; otherwise, it appears

to be an exceptional solution to store, transport and manage services and agents.

With a solution for the deployment and control of agents available to us, along

with a semantic method for representing information, we have realized the ability to

allow mobile code access to information represented in the computer; that is, we have

achieved knowledge acquisition and knowledge representation. We have smartly

connected small worlds of information. Having achieved access to machine readable

information, the next chapter discusses concepts of software agent theory and presents

two example implementations of agents.

107

V. AGENTS

A. BACKGROUND
This chapter discusses the notion of software agents, their relationships to each

other and to humans, and considerations for their employment in military operations.

Additionally, this chapter discusses a sampling of the agents we developed in support of

an agent-based prototype application called “ArchAngel.” The purpose of this chapter is

two-fold. That is, it provides an abstract conceptual underpinning for agents, and follows

with concrete illustrations.

Agents in the context of the Semantic Web (SWEB), or any networked

architecture, will prove indispensable. Software processes described as agents are

already in limited operation. We argue that many of these so-called agent

implementations are loose interpretations of “autonomous agents;” and in fact, are

possibly described as agents for marketing purposes. Nonetheless, we use a fairly

flexible interpretation of agents in our work, aiming to capitalize on autonomy,

messaging and mobility – three of the many essential aspects of agents.

To some, the idea of autonomous agents acting on our behalf may seem

ridiculous, futuristic, or even dangerous. Others may view the idea of agents on the

network as revolutionary. We settle somewhere in the middle. That is, we believe the

wide-scale application of agents will eventually happen as a product of necessity. We

also assert that agents will shoulder the burden of many of the mundane tasks humans

currently perform. On the other hand, we also believe the ubiquitous presence of agents

will emerge subtly.

B. AGENTS DEFINED

1. What Are Agents?

There is no universal agreement on what a software agent is. In fact, there is

controversy among the experts concerning the exact definition of an agent. (Tanenbaum,

2002, 173) For the purposes of this paper, it suffices to define a software agent as a

software process capable of reacting to percepts (input), and initiating changes in its

108

environment (output), possibly in collaboration with human decision makers or other

software agents. This is a broad definition, allowing different types of software processes

to be described as agents. Figure 27 shows the most basic function of an agent: to receive

percepts from its environment and output actions to its environment.

Figure 27. An Agent Takes Sensory Input from Its Environment and Outputs Actions

That Affect It. This Interaction Is Typically Ongoing, and Non-Terminating. (From:
Weiss, 2001, 29).

There is no widely-accepted, standard classification guide for agents as yet.

However, for the purposes of our discussion, we will enumerate some of the basic types

of agents. In most instances agents should be autonomous46, and they should also be able

to cooperate with other agents. The combination of autonomy and cooperation leads to a

class of agents called “collaborative agents.” Collaborative agents seek to achieve

common goals through cooperation. For example, collaborative agents might be used to

schedule a meeting between human actors. Another type of agent commonly described is

a mobile agent. A mobile agent is able to move around to different machines. Although

not mandatory, many agents require mobility. Indeed, their autonomous and interactive

nature normally dictates agents possess mobility. The class of mobile agents is not

mutually exclusive from other classes of agents. In fact, other classes of agents may be

mobile. From a functional perspective, other types, or classes of agents emerge. One

type of generally accepted class is interface agents. This class of agents typically assists
46 By “autonomous” we mean the agent is “authorized” to make decisions on our behalf.

Environment

Agent
Sensor
input

Action
output

109

an end user in the use of one or more applications. A distinguishing characteristic of

interface agents is the ability to learn. As the interaction between the user and the agent

increases the agent is able to provide improved support. Closely related to interface

agents are information agents. Their main function is to manage information from many

different sources. Information agents may also be referred to as “keeper agents.” (Weiss,

2001, 428)

Significant attributes of agents include reactivity, pro-activity, and adaptability.

Additionally, communication, self-healing and continuity, or long-lived-ness, are key

traits. Reactivity implies that the agent effectively and efficiently takes a specified action

in response to inputted percepts. An added degree of sophistication is for an agent to

possess the ability to initiate actions that cause changes in domain state. The ability to

learn, or adapt, is another defining trait of agents. This was discussed with the interface

agent class. Communication is essential for collaboration and any degree of

sophistication and to be sure is common to all agents. In addition to all these traits,

which not all agents must possess, continuity is important for many applications of

agents. The ability to operate over long periods of time is central to many agent

activities, as we intend to delegate some tasks to them simply because of endurance.

Self-healing agents are vital to many applications. When systems crash or network

connections are lost, many agents must be able to be automatically reconstituted.

As we described earlier, Jini is designed to handle precisely the ability of agents

to automatically recover from system and/or network failures. Jini/CoABS also directly

enable many of the other attributes such as continuity, mobility, communication, and

interface. All these traits may be directly or indirectly implemented using Jini/CoABS.

Table 5 summarizes important distinguishing properties/classes of agents.

110

Property

Common to all
Agents?

Description

Adaptive No Capable of learning

Autonomous Yes Can act on its own

Collaborative No Autonomous and communicative

Communicative Yes Can exchange information with users
and other agents

Continuous No Has a relatively long life span

Information No Manage information; “keepers”

Interface No Interaction with human; learning

Mobile No Can migrate from one site to another

Proactive Yes Initiates actions that effect its
environment

Reactive Yes Responds timely to perceived changes
in its environment

Self-healing No Capable of self-reconstitution

Table 5. Properties of Agents (From: Tanenbaum, 2002, 175).

Any control system can be viewed as an agent. An oft-cited example is a

thermostat that automatically changes its output from one of two states when it senses

changes in its environment’s temperature. This behavior is ongoing and automatic. Of

course, more sophisticated control systems, with more elaborate decision systems exist.

Examples include autonomous space probes, fly-by-wire aircraft, nuclear reactor control

systems, etc. (Weiss, 2001, 31) Most software daemons (disk execution and monitor),

which monitor a software environment and perform actions to modify it, can be viewed

as agents. In section E we detail some of the agents developed during our research, but

now we discuss the notion of “intelligent agents.”

C. INTELLIGENT AGENTS

Intelligent agents may be described as agents capable of flexible, autonomous

actions executed to meet their design objectives. Flexibility in this context refers to

reactivity, pro-activeness, and social ability. Reactivity means agents are able to perceive

their environment and respond to changes in a timely manner to achieve design goals.

111

Pro-activeness refers to the goal-seeking behavior of an agent that takes the initiative to

satisfy its design criteria. Social ability means agents collaborate with other agents to

achieve goals.

1. Agent Decision-Making
Inasmuch as humans rely on each other to make timely, effective decisions, we

also require a degree of confidence to rely upon agents to make coherent, rational

decisions. Autonomous, mobile, reactive agents will assist the human decision maker in

a variety of ways. For example, they will help by increasing the information analysis

rate, thereby mitigating analysis backlog. The reduction in analysis backlog will

indirectly lead to increased knowledge yield and then more actionable intelligence (new

knowledge). The end result: a greater effective decision rate, and reduced – not

eliminated – uncertainty in warfare.

2. Decision Trees
Human decisions are made based partly on experience (i.e., memory). One may

recall facts about a given situation and assign probabilities to certain outcomes occurring.

Formal decision trees may be readily developed to capture and describe expected

outcomes for a given scenario and its associated options. Similarly, an agent may be

fortified with memory in the form of a database or knowledge base. As Figure 28

suggests, an agent provided with state memory will be able to consider past states of the

environment to decide its next actions. A mechanism such as Bayesian belief

principles47 may be combined with the agent’s memory, and its design goals to enable the

agent to make decisions based on perceived sensory inputs. In this highly mechanistic

structure, agents would lack the inference capabilities of humans; however, the

incorporation of memory (i.e., database) enables agents to effectively learn over time and

experience, much like humans. Simple inferences would be achievable relatively early in

the life of an agent. As the agent developed a deeper memory, it would be able to

provide more reliable and complex inferences for a given problem domain.

47 Bayesian belief systems are but one example; classification and subsumption are two others.

112

Figure 28. An Agent Fortified with Memory (From: Weiss, 2001, 41).

The incorporation of state within an agent should not be confused with the notion

of an agent interacting with a knowledge base. When we refer to state “within an agent”

we mean to indicate the agent itself possesses memory. We seek to enable the agent to

acquire, over time, increasingly sophisticated inference capabilities. This characteristic

enables the agent to more intelligibly interact with a knowledge base to produce richer

inferences as previously mentioned.

3. Agents in Action
The implementation of agents supporting the military commander would include,

but not necessarily be limited to, the ability to provide situation-dependent alerts based on

design criteria. For example, the proximity of an enemy unit relative to own forces may

trigger an alert. While this sort of capability is not unique to current operations, it is

enhanced by the ability of the agent to also provide warnings. Building on the previous

example, an alert could include one or more warnings. The agent could advise the

commander that the enemy unit is not only a certain proximity to own forces; it could

Environment

Agent

State

Perceive

Next

Action

113

provide a warning describing its capabilities, possibly based on the agent’s organic

memory of this particular unit, or through the agent’s interaction with a knowledge base -

or some other means. This characteristic could be further improved by the provision of

statements of implications and recommendations for action. The agent might “know,”

based on its internal memory and built-in intelligence, or through consultation with a

knowledge base, that a given unit may be superior in force to our own. Consequently, it

might recommend evasive action and provide potential effects for engagement instead.

4. Adoption Inhibitors
Inertia will lead to skepticism and reluctance to incorporate software agents. The

willingness of a military commander to rely on software agents who propose courses of

action in real time may be marginal – at least initially. An implementation that “overlay”

agents atop extant situational awareness systems will help the agents establish trust with

the human decision makers. The implementation should not materially alter current

systems, and, in fact, could be optionally available as a service. Just as new personnel

must earn trust when joining a group or organization, so to must a software agent; it is a

universal norm. Over time and trials, feedback from the agent will be gradually factored

into operations, as long as the agent demonstrates reliable outputs. Agents should be

tested thoroughly, before and after deployment, to ensure they are rational and are

properly designed. Additionally, agents must be (re-)configurable by operators who only

know the mission requirements and not the technical details of the agents’ inner

workings. The requirement to minimize the OODA loop and to maintain information

dominance will necessitate large-scale integration of software agents into various

systems, including Command and Control systems. Software agents operating inside

semantic constructs will necessarily pervade these systems, enhancing current decision-

making processes.

Notably, at least one possible unintended consequence that may result, however,

is that the increased decision rate may simply lead to increased available information as

we learn more and more through our actions. This situation essentially places us where

114

we currently are: striving to manage too much data. The difference would be that we are

confronting too much information. However, this is speculative, and it does not obviate

the need to increase our effective decision rate today.

D. AGENT EXAMPLES – CONCRETIZING THE CONCEPTS

1. ArchAngel Agent Based System Prototype
ArchAngel is a prototype SWEB system that addresses the very basic starting

point of how software agents can be used to enhance the ability of the war fighter. The

objective of ArchAngel is to examine the use of SWEB technologies and agents

interacting inside a sensor grid48. Ultimately, the agents using rules and ontologies will

interpret instance information represented in the computer (semantics) and provide alerts,

warnings, recommendation actions, and statements of implication to the human decision

maker(s). It is worth noting that, to date, the technologies used to determine how

software agents can enhance mission effectiveness are primarily open source, based on

W3C Recommendations. One of the questions ArchAngel seeks to address is whether or

not the SWEB is a necessary and sufficient technology to military operations, specifically

the Expeditionary Pervasive Sensing (EPS)49 program.

The functional intent of the ArchAngel project is to retrieve valuable information

from heterogeneous50 data sources and assemble it into a master operational context

document for storage in a rudimentary knowledge base (KB). This document will be

written in the OWL and will be used to conduct reasoning operations in an effort to

increase programmatically intelligence yield and realize new knowledge.

48 The notion of a grid is similar to the power grid. That is, an interconnected network of sensors in

concert. Failures in one part of the grid do not necessarily affect other portions of the grid.
49 EPS is an Office of Naval Research (ONR) sponsored program run by the Naval Warfare

Development Command (NWDC) designed to investigate agent-based technologies to support a future
battlespace with a proliferation of ISR sensor systems.
(See[http://www.nwdc.navy.mil/Concepts/EPS.asp]).

50 By “heterogeneous” we mean different data models, such as relation, XML, object, etc.

115

Presently the ArchAngel project includes two primary agent “teams.” They are

informally called the “REPEAT”51 and “Message” agents. Each team represents one of

many agent sets (societies) contributing to the larger goals of the system. The Message

agents were designed to support Personnel Recovery (PR) message flow functions;

whereas, the REPEAT agents were designed to act upon (simulated) Navy Over-The-

Horizon (OTH) Gold messages. Both agent teams implement a design pattern we refer to

as the “Agent Triad.” (See Figure 29).

2. Agent Triad
The concept underlying the triad design pattern is that one agent acts as a

“monitor” or “watch/listen” agent; a second agent acts a “broker” or “controller,” and the

third acts as a “handler” agent. It is not mandatory that one agent per function exist; it is

possible, even likely, that a number of agents may be employed to accomplish the overall

goals. However, the triune combination appears well suited for a variety of application

instances. In fact, as we will observe, the Message agent team implements several agents

to accomplish the handler function; whereas, the REPEAT agent team consists of only

three agents. Generically, the monitor agent will watch or listen to a specified source of

data. The source may be incoming messages or state changes (e.g., changes in database),

or a host of other sources. The broker agent, based on messages from the listener agent,

will make a determination on a course of action based on design criteria, and will act

accordingly. The actions may include, but are not limited to, taking action itself,

notifying the handler to perform some action, or possibly directing the listener to execute

some activity. The REPEAT agents and the Message agents each follow a similar intra-

agent messaging pattern, and will be detailed shortly. But first, it is necessary to discuss

other characteristics that both agent teams share.

51 “REPEAT” comes from a SPAWAR software application that is capable of transmitting simulated

test messages over serial COM ports and TCP/IP connections. We used the latter. The REPEAT software
is produced by SPAWAR. See [https://repeat.spawar.navy.mil] for more information.

116

Handler
Agent

Monitor
Agent

Source

Agent
Communications

Agent
Communications

Broker
Agent

1..*

1..*

1..*

Figure 29. Agent Triad Design Pattern.

The agents were developed using the CoABS API. Additionally, they operate and

function within the CoABS Grid software. As described in the Distributed Computing

chapter, CoABS is an extension of Sun Microsystems Jini™ technology. Some of the

features of Jini/CoABS that made it attractive for use in ArchAngel included automatic

lookup and discovery of services and agents, mobile code, the self-healing nature, and a

messaging function that allowed the agents to communicate in a loosely coupled way.

These features combined to enable a robust distributed computing application; one we

feel is central to a SWEB application. The REPEAT agents and Message agents were

built on Java technology, implemented open source XML technologies, and performed

exceptionally well. We now discuss two of the agent teams in turn.

3. REPEAT Agents

a. Overview
The REPEAT agents are a building block of ArchAngel. The idea behind

the REPEAT agents is to simulate Global Command and Control System – Maritime

(GCCS-M) messages to reflect near-real-time status of the maritime battlespace. The

data source used for the REPEAT agents is a software application called - predictably -

REPEAT capable simulating the transmission of various text messages. The messages

A'

117

used for our simulation are customized, fictitious Over-the-Horizon (Gold) or OTH Gold

messages. These messages are contact reports adhering to the OTH Gold specification52,

and are human-readable, machine-parse-able messages. These messages are transformed

to XML, then stored and manipulated in the Xindice XML database.

We used the Agent Triad design pattern to intercept and manipulate the

incoming messages. This triad consists of just three different software agents. They

include an agent that listens for messages (RepeatListener), an agent that serves as a

broker of the messages (RepeatBroker) and a message handler agent (RepeatHandler).

The overall function of the RepeatListener in this application is to

intercept the text messages, transform them to XML, store them in an XML database, and

finally, send a notification message to the RepeatBroker.

In addition to the agent classes, there is an administrative package of

classes that facilitates deleting files from the various database collections used in this

project. It is called “RemoveResources,” and it makes a connection to the XML database

and iterates through each of the defined collections deleting all resources (XML

documents) in each collection. This helper class makes collection management much

easier by automatically deleting resources between simulations.

Another class in the admin package is the “MyXpath” class. This class

will retrieve the unit names from the “Unidentified” collection. This class could serve as

part of an agent as ArchAngel is further developed. One potential use is to peer into the

unknown unit files and make decisions about those units, and/or notify the human

decision makers. We now walk through a thread of operation for the REPEAT agent

team.

b. Functional Flow
First, the OTH Gold text messages were constructed for our scenario. We

chose to create two XML files that contained all the necessary data elements for the

entire scenario. Each file contained fictitious enemy units, some of which were

52 The document we referenced is titled “Operational Specification for “Over-The-horizon Targeting

Gold Revision D”, and was published under direction of CNO N62 by Navy Center for Tactical Systems
Interoperability, 1 September 2000.

118

stationary (static) while others were mobile (movers). One file included all the units,

static and movers, and was used to initiate the scenario. The other XML file contained

only the movers, and their various locations to be plotted over a five day period. Once

completed, the scenario XML files were transformed into numerous OTH Gold text

messages in accordance with the OTH Gold specification mentioned earlier. With the

text files built, our data source was ready to be used by the REPEAT, specifically the

RepeatListener.

With all agents operating inside the Grid, the REPEAT software was

configured to begin transmitting the text messages over a TCP/IP connection (on port

2021). Once received, the RepeatListener would capture the text transmission and

transform it to an XML representation. Then, the OTH (XML) file was temporarily

stored in a Xindice collection called “TempStorage.” Then a message was sent to the

RepeatBroker agent for further action.

The RepeatBroker, upon receipt of a message from the RepeatListener,

retrieved the stored XML document, and then checked the latitude and longitude values

to see if the unit was currently, or was previously, in the Area of Operations (AO). If the

unit was currently in the AO, or was previously in the AO, the RepeatBroker sent a

notification message to the RepeatHandler. If the unit was not presently in the AO, and

was not previously in the AO, the OTH (XML) message was deleted by the

RepeatBroker and no further action was executed. The determination whether or not the

unit was in the AO was made by using regular expressions based on the known

coordinates of the AO. The test for whether or not the unit had been in the AO

previously was made by comparing the unit’s name to the unit collections. The intent

was not as much to make sophisticated operational or strategic decisions, but rather to

exercise agent characteristics such as communication and reactivity.

If the unit was currently in the AO or had been in the AO, the

RepeatHandler received a message from the RepeatBroker. It then determined in what

database collection the XML document should be stored. We developed Xindice

collection hierarchically structured based on the unit names. The agent inspected the unit

name and used it to determine where to store the XML document. The unit names were

119

mapped to collection locations (Xindice URLs) using a hash map. If there was no known

collection to store the XML document, the RepeatHandler stored it in a collection

designated “Unidentified.”

The flow of information and messages between the agents is depicted

graphically below (See Figure 30). A couple of items to note include the following.

First, the diagram illustrates a computer with the text “Tomcat server” coming into it.

Apache Tomcat53 is an open source application server that we used to host an application

called Xincon. Xincon is an (open source) web-based application that allows one to

perform basic database management activities on Xindice, such as adding and deleting

documents and collections. The output side of the computer in the figure is a screen

capture of Xincon depicting the collections used in the REPEAT agent team. Above the

screen capture we show sample OTH XML files that may be used to provide a 3D

presentation of the scenario in the browser. As we will observe in the section describing

the Message agents, we are able to display the important message information items in a

browser; however, this functionality is not yet completed for the REPEAT agents.

REPEAT

OTH.txt

OTHContacts/
Units/

TempStorage/

HandlerAgent

Handler

Identification
Communication KQML

Parser/JDOM
XML Writer

<Xindice XML:DB/>

OTH_123.xml

BrokerAgent

Broker

Verify if in AO
Store
Notify

ListenAgent

Intercepts
Listener

(Port 2021)
OTH.txt

Monitor
Read/Transform/Strore

Communication/Notification

addMessage(“OTH_123.xml”)

inAO(“OTH_123.xml”)

If inAO||was inAO,
addMessage(“OTH_123.xml”)

storeResource(OTH_123.xml,
TempStorage)

moveResource(TempStorage,
Unit/OTH_123.xml)

Contact
Reports
Populate

AOR

Transmit OTH
messages

Tomcat Server Xincon

Render in X3D
(TBD)

REPEAT Agent Triad Flow

CoABS Grid

Figure 30. REPEAT Agents Functional Flow.

53 Tomcat information is available at [http://www.apache.org/jakarta].

A'

120

c. Control Flow
This section provides a more technical survey of the control flow inside

and among the REPEAT agents. We step through a System Sequence Diagram (SSD)

that captures the communications among agents and significant method activity. As we

observe from Figure 31, the process is begun by starting and registering the various

REPEAT agents in the grid.

First, we start the HandlerAgent providing an agent name; and then it is

registered in the grid. Next, the BrokerAgent is started and then registered with its name.

Likewise, we register the ListenerAgent. With the REPEAT agents ready, the REPEAT

data source begins transmitting OTH Gold text messages on port 2021. There may be

any number of messages transmitted, and the REPEAT source will continue until it has

emptied its “queue,” or until it is manually stopped.

With the ListenerAgent bound to port 2021, each text message is

intercepted and transformed to an XML representation. The resulting XML document is

stored in the TempStorage collection inside Xindice by the ListenerAgent. After the

XML document is stored, the ListenerAgent sends a message to the BrokerAgent passing

the saved XML file name, and the location it was stored.

The BrokerAgent gets the XML document (resource) from the

TempStorage collection, and then checks the unit’s location described in the XML

document to see if it is in the Area of Operations (AO), or was in the AO. If the result is

“false” the XML document is deleted from the database. If the result is “true” the

BrokerAgent sends a message to the HandlerAgent, providing the name of the resource.

The HandlerAgent retrieves the resource from the TempStorage collection

and then determines whether or not the unit described in the resource is already contained

in a collection inside the ArchAngel collections of enemy units. If it is then the resource

(XML document) is stored in its unit’s collection (and the original is removed from the

TempStorage collection). If the described unit is not contained in a collection, the

resource is moved to the “Unidentified” collection. This completes a cycle for the

REPEAT agents; however, this process continues for as long as the REPEAT data source

transmits OTH messages.

121

The REPEAT agents are not intended to be a sophisticated agent society;

however, they do work cooperatively within CoABS to complete an objective. They also

demonstrate communication and reactivity. They perceive inputs and provide

appropriate outputs. The REPEAT agents could be improved by implementing a formal

Agent communication Language (ACL), and interacting with a knowledge base

consisting of formal rules, ontologies, and marked up instance data. Additionally, the

logic embedded in the agents could be enhanced to cause behavior suitable to the domain.

Finally, the application could be made less brittle by implementing more generic

algorithms for determining in what collection a unit belongs.

CoABS Grid

Archangel
Native XML

DB
Server

REPEAT
Transmitter ListenerAgent BrokerAgent HandlerAgent

startHandlerAgent(agentName)

registerInGrid("HandlerAgent")

startBrokerAgent(agentName)

registerInGrid("BrokerAgent")

startListenerAgent(agentName)

registerInGrid("ListenerAgent")

1..*: transmit(OTHGold, 2021)

bindToSocket("2021")

(1..*):XML: transformOTH(OTH.txt)

storeResource(OTH_xxx, TempStorage)

addMessage(OTH_xxx, TempStorage)

getResource(OTH_xxx, TempStorage)

bln: inAO(lat, long)

inAO:true: addMessage(resName)
inAO:false: deleteResource(resName)

retrieveResource(resName, TempStorage)

true: storeInCollection(resource, unitCollection)

bln: inCollection(unitName)

false: moveToUnidentified(resource, collection)

Figure 31. REPEAT Agents System Sequence Diagram.

122

d. Example Code54
Below is a code snippet from one of the REPEAT Agent classes

(RepeatListener). It first declares this class’ package name (i.e.,

navy.nps.archangel.repeat.listener). Next it imports the core Jini classes it requires. All

three of the Jini classes imported will be used in combination to retrieve the

RepeatBroker’s proxy from the Lookup service. In this case, the Jini Entry class is used

to contain the name of the RepeatBroker. The ServiceTemplate class will enable us to

build what is essentially a query that will return a ServiceItem. In this case the returned

service item is the proxy for the RepeatBroker.

The next set of imported classes provides necessary CoABS Grid

functionality. For instance, the AgentRegistrationHelper class, as its name implies,

assists us in registering our RepeatListener in the Grid. The AgentRep class is the “well-

known interface” that all agents within the Grid implement. We use the AgentRep as part

of the ServiceTemplate (re: query) to help define the service (in this case an agent) we

require. The Message and BasicMessage classes also are intuitive. They both make it

possible to send and receive messages between agents. In this case, we use them to send

messages to the RepeatBroker. The MessageListener class is an interface used by agents

to be notified of incoming messages. The MessageListener interface defines one method:

messageAdded(msg:Message). It precludes agents from polling a queue (i.e.,

MessageQueue). The last class in this group is the CoABSAgentDescription, and as its

name implies, it uses public fields to describe various attributes of an agent. The

RepeatListener uses one instance of this class to define its own attributes, such as its

name, description, ontologies used, agent communication languages used, etc.55

The next set of imported classes provides input/output functionality. In

sum, they allow the RepeatListener bind to a port, input the text stream, and output it as a

file to the disk drive.

54 Code in this chapter should be considered incomplete. We include primarily code necessary to

convey the agent aspects.
55 Our agents do not implement agent communication languages at the time. Instead, we use the

“NaturalLanguage” attribute to indicate we are only passing string values between agents.

123

After some initial declarations, we find the constructor for this class. We

observe that it accepts the agent name as a parameter. In the case of the RepeatListener,

we have “hard-coded” it simply enough to “RepeatListener.” Next, we register the agent

with the grid, using the agent name we just assigned. Afterward, the agent’s attributes

are defined, and then a ServiceTemplate is constructed. Recall, we use the

ServiceTemplate class to essentially build a query that returns the required agent proxy.

Notably, part of this template includes the AgentRep.class interface. When looking for

agents on the grid, this interface is always used.56 In this case we require the

RepeatBroker agent.

With the SearchTemplate built, we now contact the Lookup Service to

request the RepeatBroker’s proxy. Next, we bind a server socket (port 2021) and listen

for REPEAT-generated OTH Gold text messages. When a message is intercepted, we

process it using the process() method. The process method builds the text file and saves

it to disk. After the file is saved, the process() method passes the name of the file to the

OTH2XML class which transforms the text file to an XML representation. The XML file

is eventually stored in the Xindice database in the TempStorage collection (by the

XML2Xindice class).

After the file is processed the process() method returns the stored XML

file name. If the Lookup Service returned an item from our earlier request

(reg.getDirectory().lookup(serviceTemplate) method), we construct and send a (Basic)

message to the returned service item (i.e. Repeatbroker). The message includes, among

other things, the name of the saved XML file.

This effectively completes a “cycle” for the RepeatListener. There are

two other methods in this class, namely the main() method and the messageAdded()

method. The main() method simply instantiates the agent, passing it the name; and the

56 Recalling the Distributed Computing chapter, we can also publish and/or subscribe to services on

the grid. If we required a service, we would use that service’s well-known interface, which may likely be
unique to the particular service required. This implies foreknowledge of the service is required –
shortcoming we hope to solve using SWEB technologies.

124

messageAdded() is implemented, but not used. As the application grows in

sophistication, the RepeatListener will likely receive incoming messages; accordingly, it

is implemented as a marker.

The other two agents in this team perform similarly, as it relates to CoABS

grid functionality. There specific goals are different, but after understanding the basic

Grid and Jini classes used in the RepeatListener, one will be able to analyze the other

agents with not too much difficulty.

package navy.nps.archangel.repeat.listener;

import net.jini.core.entry.Entry;
import net.jini.core.lookup.ServiceItem;
import net.jini.core.lookup.ServiceTemplate;

import com.globalinfotek.coabsgrid.AgentRegistrationHelper;
import com.globalinfotek.coabsgrid.AgentRep;
import com.globalinfotek.coabsgrid.BasicMessage;
import com.globalinfotek.coabsgrid.Message;
import com.globalinfotek.coabsgrid.MessageListener;
import com.globalinfotek.coabsgrid.entry.CoABSAgentDescription;

import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.File;
import java.io.FileWriter;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.net.ServerSocket;
import java.net.Socket;
import java.util.Calendar;

/**
 * ArchAngel project
 * RepeatListener listens to a port (currently 2021) to receive GCCS-M
 * (OTH Gold) text messages from the SPAWAR program called REPEAT. The
 * RepeatListener imports the message as a text file and converts it to
 * an XML file.
 * @author Doug Horner, Sam Chance
 */
public class RepeatListener implements MessageListener {

 String brokerName = “RepeatBroker”;
 String XMLFilename;
 private AgentRegistrationHelper reg;

Declare class in
listener package

Import
required grid

classes

Import various
input/output

classes

Import core Jini
classes used

Define class variables

125

 public static final short PORT = 2021;

 /**
 * Constructor. Instantiates an AgentRegistrationHelper to register
 * with the grid. Creates a search template to match items that
 * have a CoABSAgentDescription with name in brokerName. Retrieves
 * proxy for RepeatBroker fm Lookup service. Binds to ServerSocket
 * and listens for messages. When a message is received, it calls
 * the process() method and then sends a message with a file that
 * contains an XML file name.
 * @param String agentName
 */
 public RepeatListener(String agentName) throws IOException {

 reg = new AgentRegistrationHelper(agentName);
 reg.addMessageListener(this);

 reg.registerAgent();

 System.out.println(“Registered as “ + reg.getName());

 //Returns agent description to allow setting agent attributes
 CoABSAgentDescription desc = reg.getCoABSAgentDescription();

 String[] ont = {“OTH_Gold”};
 String[] acls = {“NaturalLanguage”};
 String[] contentlang = {“NaturalLanguage”};

 //Assign all desired attribute values to public fields
 desc.ontologies = ont;
 desc.acls = acls;
 desc.contentLanguages = contentlang;
 desc.description = “Listens on port 2021 for Repeat transmissions.”;
 desc.organization = “Naval Postgraduate School”;
 desc.architecture = “ArchAngel”;
 desc.documentationURL = “https://poweredge.nps.navy.mil/route”;
 desc.displayIconURL=http://poweredge.nps.navy.mil:8080/ArchAngel.jpg”;

 // Find Broker agent Use well-known (Agent) interface
 and agent
 name (RepeatBroker).
 Class[] classArray = { AgentRep.class };

 CoABSAgentDescription brokerTemplate = new
 CoABSAgentDescription();

 brokerTemplate.name = brokerName;
 Entry[] brokerTemplateArray = {brokerTemplate};

 ServiceTemplate serviceTemplate =
 new ServiceTemplate(null, classArray, brokerTemplateArray);

 ServiceItem[] items= reg.getDirectory().lookup(serviceTemplate);

 System.out.println(“(Broker) items found: “ + items.length);

 ServerSocket sock;

Facilitates agent grid
registration

Register
RepeatListener in Grid Define Repeat-

Listener Attributes

Construct search
template to retrieve

broker proxy

Build service template to
retrieve RepeatBroker

from LUS

126

 Socket clientSock;
 int counter = 1;

 try {
 //New server socket on port 2021
 sock = new ServerSocket(PORT);

 while ((clientSock = sock.accept()) != null) {

 //Process the OTH Gold text message
 String othMessageName = process(clientSock, counter);

 System.out.println(“The message name being sent to the
 RepeatBroker is: “ + othMessageName);

 //Conditionally, send message to RepeatBroker. Pass file
 name as parameter.
 if (items.length != 0) {

BasicMessage requestMessage = new
BasicMessage(brokerName, reg.getAgentRep(),
“NaturalLanguage”, othMessageName);

 ((AgentRep) items[0].service)).addMessage(requestMessage);
 }
 else System.out.println(“Didn't find a Broker.”);

counter++;
 }
 }
 catch (IOException e) {
 e.printStackTrace();
 }
 catch (Exception ex) {
 ex.printStackTrace();
 }
 }
 /**
 * Accepts a Socket connection and an int counter. Intercepts the
 * OTH Gold text message, calls the OTH2XML class to convert text
 * message to XML format. Returns a String representing the saved
 * file's name.
 * @param Socket Socket to connect to.
 * @param int Counter.
 * @return String Saved XML file name.
 * @throws IOException, Exception
 */
 public String process(Socket s, int counter) throws IOException,
 Exception {

 System.out.println(“Accept from client” + s.getInetAddress());

 InputStream is = s.getInputStream();
 InputStreamReader isr = new InputStreamReader(is);

 BufferedReader br = new BufferedReader(isr);
 StringBuffer bs = new StringBuffer();

Listen on port 2021

Call to process
text file

If RepeatBroker
proxy returned, send
message with XML

file name

Process intercepted text

127

 File othDataFile = new File(“c:/ArchAngel/temp/txt/oth” +
 counter + “.txt”);
 counter++;

 PrintWriter out1 = new PrintWriter(new BufferedWriter(

new FileWriter(othDataFile, false)));

 while (br.ready() {
 bs.append(br.readLine());
 out1.flush();
 bs.delete(0, bs.length());
 }

 OTH2XML oth = new OTH2XML(othDataFile);

 XMLFilename = oth.getMsgName();
 s.close();
 return(XMLFilename);
 }

 /**
 * MessageListener method to notify RepeatListener a message has
 * been added to a message queue for it.
 * @param msg Incoming message.
 */
 public synchronized void messageAdded(Message msg) {
 System.out.println(“received response”);
 System.out.println(msg);
 reg.removeMessage(msg);
 System.exit(0);
 }

 /**
 * Main method instantiates RepeatListener with name
 * 'RepeatListener'.
 * @param args Not used for this class.
 */
 public static void main(String[] args) throws IOException {

 if (args.length > 0) {
 System.err.println(“Syntax: java RepeatListener”);
 }
 else new RepeatListener(“RepeatListener”);
 } //End of main method
} //End RepeatListener class

Text file
created and

saved

OTH text file passed
to OTH2XML to be
transformed to XML

Saved XML file name
passed to RepeatBroker

Allows RepeatListener
to receive messages

Instantiate
RepeatListener

128

4. (PR) Message Agents57

a. Overview
During initial development of the ArchAngel prototype, emphasis was

placed on a pre-mission tasking and planning scenario as it might relate to a Personnel

Recovery (PR) operation58. To demonstrate the agents’ ability to collect and process

information, we developed the Message agents. As we will see, they proved apt in this

effort.

In any mission there is an operational continuum. This is the cycle a

military planner goes through in the tasking, planning and execution of a mission. It can

be broadly broken into the following phases: pre-mission planning, insertion, infiltration,

actions at the objective area, extraction, post-mission analysis and reporting. Software

agents can be effectively utilized to help military commanders make better decisions

through each phase. The Message agents were developed and employed to assist in the

acquisition, extraction, composition, and presentation of valuable, relevant information.

More specifically, the Message agent team functionality consists of retrieving

information from various USMTF message sources, searching for and parsing incoming

information, importing information into a master operational context (MOC) document,

and rendering the specified information in a 3-dimensional (3-D) presentation using

X3D/GeoVRML59 inside a (Netscape) browser. The MOC is intended to be a domain

instance document, marked up in OWL and stored as part of a background knowledge

base (KB).

For the Message agent team we used a set of 9 agents. These broke down

into the following types of agents, based on the triad pattern: there was one Message

Watch agent (MsgWatch), one Message Broker agent (MsgBroker), and six Message

Handler agents (MsgHandler). In addition to these three types of agents we built an

57 This section, documenting the (PR) message agents, is derived from a report written by Mr. Doug

Horner.
58 The PR mission area was formerly called Combat Search Air Rescue (CSAR).
59 X3D is an XML-based 3-D rendering technology [http://www.web3d.org/x3d.html]; GeoVRML is a

Java-based 3-D mapping specification [http://www.geovrml.org].

129

interface, or Display agent (DisplayAgent). The Display agent allowed the human

operator to render the processed information in a three-dimensional (3-D) presentation

using a (Netscape) browser.

The MsgWatch agent was responsible for viewing incoming messages to

see if any pertained to the PR mission. To discern the applicable messages, the

MsgWatch agent was encoded with the pertinent message types. If a relevant message

was observed, the Watch agent sent a notification message to the Broker agent. For the

first implementation, the MsgBroker used simple string matches to link the message type

with the corresponding Message Handler agent. The MsgBroker agent was responsible

to contact the correct MsgHandler agent and notify it that there was a message ready for

retrieval from the message-processing center (Xindice). Our initial design included a

MsgHandler agent for each type of message. Each MsgHandler agent downloaded the

applicable message from the XML database; parsed the incoming message; and stored the

parsed message in the knowledge base. Interacting with the DisplayAgent, a human

operator could display the composed 3-D scenario in the Internet browser.

In military operations, one primary source of initial information is

received through USMTF message traffic. For pre-mission planning of a PR operation

there are several messages that give the responding unit a point of departure for planning.

Table 6 below describes some of the pertinent messages.

Message Short Title Message Name Description
WARNORD Warning Order Notification to prepare for mission tasking.

(Not used in scenario.)
OPORD Operations Order Standard five paragraph order. Transmits

instructions/directives to subordinate/supporting
military organizations

ATO Air Tasking Order Tasks air missions. Cross-force tasking. Intra-
service tasking.

SPINS Special Instructions Addendum to ATO. Normally provides PR
instructions.

INTSUM Intelligence Summary Enemy unit information (e.g., strength, location)
SEARCHPLAN Search Action Plan Designates actions required from participating

search and rescue units and agencies during PR
mission

AIRORD
(fictitious)

Air Order Indicates route, Racetrack and control points in
the Air Operations Area

SAFER Situated Area for Evasion and Recovery Designates locations for potential rescue and
recovery actions

SARIR Search and Rescue Incident Report Reports any situation that may require a PR
operation. (Not used in scenario.)

Table 6. Domain Messages.

130

All messages, less the WARNORD and SARIR, were developed in XML

for our exemplar. The full versions of the messages were stored in Xindice, the open

source native XML database we described in the Data Sources chapter.60 Although we

composed more or less complete messages for our (fictitious) scenario, they contained

excess data or data not germane to our PR mission.61 For this reason it was necessary to

parse the messages before entry into the background knowledge base. More specifically,

we parsed the essential elements of information (EEI) required for our operation. And

because the messages were structured in XML, they were easily parsed using XSLT.62

This illustrates an example of delegating work to agents. That is, instead of manually

reading the messages to glean the EEI, we allow the agents to do it for us. With the EEI

extracted, the MOC was ready to be populated with domain state information.

After the EEI were stored in the MOC, they were ready to be displayed as

3D graphics in a browser. The presentation was a geographic depiction of the various

units captured in the MOC. Simply described, we took the EEI provided by the USMTF

messages and implemented this as an overlay to a three-dimensional terrain visualization.

Specifically, it includes the following information:

• Target locations

• Enemy positions

• SAFE areas

• Spider routes

• Air control points

• Air control racetracks

• Air routes

• Areas of operation

60 Recall, when working with XML data and Xindice, there is no mapping between different data models. One
simply designs his data model as XML and stores it as XML. As discussed in the Data Sources chapter, this provides
tremendous flexibility.

61 This is typical of most messages and operations.
62 While messages currently are coded in a text-based format (USMTF), a message encoded in XML

is not a large leap. There is an effort underway called the “Joint-NATO XML-MTF Initiative” which has
published draft recommendations for encoding MTF messages in XML.
[https://www.nctsi.navy.mil/secsite/webmgr/fouo/det/ introinit.asp] (Site is password protected),

131

• Joint Special Operations Area

• Air Operations Area

Because the information is updated daily via subsequent (USMTF)

messages, visualization of the area of operations can be effective for units on standby for

a downed pilot response. This can give all participants a better understanding of the PR

domain.

Technically this was accomplished as follows: The Display agent was

developed to retrieve the MOC and transform its contents to a 3D representation. The 3D

representation was accomplished using the Extensible 3D Graphics (X3D)

specification63. Within the X3D scene, GeoVRML64 was used to combine terrain images

with elevation data (Digital Terrain Elevation Data – Level 1) to produce a quad-tree, 3D

terrain representation of the operating area. To produce the overlay in the X3D scene, the

agent converted the MOC using two XSLT style sheets. This used the JDOM65 API and

the Java Extension (Javax) package to read in XML and apply XSL Transformations to

produce the Virtual Reality Modeling Language (VRML97) scene. We viewed the 3D

scene using an Internet browser (Netscape 4.79) with a 3D plug-in called Cosmo.66 This

marked the end state for the Message agent set.

b. Functional Flow
We now discuss a single thread of operation to demonstrate how the

Message agents function. As already described, relevant messages were stored in our

XML database. From a practical point of view, the database was our message processing

center. A more sophisticated construct would allow incoming messages to be stored into

the database as they were received from external providers (much like we will see with

the REPEAT agents). Indeed, this idea is conveyed below in the functional flow diagram

(Figure 32). With the messages stored we initialize the agents. The MsgWatch agent

immediately begins comparing message names stored in the database, looking for (string)
63 See [http://www.web3d.org/x3d.html] for information about X3D.
64 See [http://www.geovrml.org/] for more information about GeoVRML.
65 JDOM is a Java-based solution for accessing, manipulating, and outputting XML data from Java

code. See [http://www.jdom.org] for more information.
66 See [http://www.cai.com/cosmo/] for more information.

132

matches. For example, the MsgWatch looks for an ATO message, and, if found, it sends

a notification to the MsgBroker agent that a relevant message was found. Upon receipt of

the notification the MsgBroker agent determines what message has been located, and

then alerts the MsgHandler. The MsgHandler uses a class to retrieve the appropriate

message from the repository. Once retrieved, the EEI are extracted from the message

using XSLT. Then the EEI are imported into the MOC also using XSLT. This process

occurs for all the pertinent messages in the database.

Once the MOC is completely populated with all declared EEI, the user

may elect to render a 3D presentation of the MOC in an Internet browser. It is

conceivable that the incoming message could be used to keep the MOC current, and

subsequently the display in the browser – all by the agents. Effectively, we may use the

agents to show a continually updating “movie” of the Area of Operations.

The functional diagram below illustrates the interactions among the

Message agents. The emphasis is on an ATO message that is processed through the

Message agent team. A couple of items to note include the following. First, the diagram

includes a screen capture of a Xindice browser. The Xindice browser is simply a GUI

application able to display collections and documents stored in Xindice. Secondly,

similar to the REPEAT function flow figure, we illustrate a computer titled Apache

Tomcat. In this instance we used Tomcat to host web page that served as our message

portal. A screen capture of the web page we developed to enumerate the messages stored

in Xindice is displayed as well. Finally, in the upper right of the figure below, we

observe a snippet of XML from the MOC, which feeds into our X3D display.

133

If REQ
.txt to
.xml

XFORM

ATO
.txt
.xml

SAFER
.txt
.xml

AIRORD
.txt
.xml

TASKORD
.txt
.xml

SPINS
.txt
.xml

SEARCHPLAN
.txt
.xml

SiSs

Message
Processing

Center

ATO.xml

P-1

Knowledgebase
+

Ontology
Xindice/Tamino

XML Native

XINDICE XML DB
SERVER

Collections
XML Messages

Browser
MOM

COCOON

APACHE TOMCAT

Message Agent

Message Headers

ATO
SPINS, TASKORD, SAFER

etc.

Monitor
Identification

Communication/Notification
KQML

Monitors Message
Center for messages

ATO Agent

ATO

Identification
Communication KQML

Parser/JDOM
XML Writer

ATO Agent

ATO

Identification
Communication KQML

Parser/JDOM
XML Writer

ATO Agent

ATO

Identification
Communication KQML

Parser/JDOM
XML Writer

P-3

Notifies message specific agent
or message; Passes URL

Master
Operation
Document.

xml
(Fields for
all relevant

CSAR
messages)

P-5

Parses (JDOM) message into
COP

P-4

Web Page
Navigates to URL retrieves

message (ATO.xml)

P-6

Renders X3D
Presentation

of CSAR
Battle space

P-7

P-8

http:// msg.xml

http:// msg.xml

P-9

MOD Stored in KB

after in
cluded in presentation

for AAR/Post m
issi

on analysis
XINDICE Browser

ARCHANGEL
Process

Figure 32. Message Agents Functional Flow.

c. Control Flow
This section provides a more technical survey of the control flow inside

and among the Message agents. Similar to the REPEAT agents, we walk through a

System Sequence Diagram (SSD) (See Figure 33). The SSD provides a useful

mechanism for tracing the control flow of the Message agents. As we observe, the

process is begun by initializing the MsgHandler classes and registering them on the grid.

Next, the MsgBroker is initialized and registered. Now that these two are active, we

initialize and register the MsgWatch agent.67

With all agents ready, the MsgWatch agent first builds a SearchTemplate

to retrieve the MsgBroker’s proxy from the lookup Service. It then connects with the

database and checks the last modified date of the messages. The purpose is for the

MsgWatch to look for the latest version of the relevant messages. Next, for each

applicable message in the database, the MsgWatch agent communicates with the

67 It is important to note the order we initialized these agents. Due to the way they were initially
designed, the MsgWatch agent will begin looking for messages immediately. If the other agents are not
registered already, no communication will occur between the agents. This limitation is easily overcome by
implementing additional functionality (e.g., “Event handling”). We simply built this design for brevity and
rapid prototyping.

134

MsgBroker agent (proxy) to notify it of waiting messages. Upon receipt of notification

from the MsgWatch agent, the MsgBroker agent contacts the designated MsgHandler

agent for each message in the database. The MsgHandler then retrieves each pertinent

message from the database using message “retriever” classes, and then performs two

XSL transforms on the message. The first transformation extracts the EEI; whereas, the

second imports the EEI into the MOC. After each MsgHandler has completed the

transforms, the MOC is considered refreshed, or current. With an updated MOC the user

may call on the DisplayAgent to render the MOC contents in 3D using the internet

browser. This completes the Message agents’ process.

The Message agent prototype is just a beginning. Over time it could be

made much more sophisticated and robust. For example, instead of string matches, we

could implement an Agent Communication Language (ACL) to make the inter-agent

communications more complex and rigorous. Additionally, the agents could operate in

this manner indefinitely, as opposed to cycling through once. Finally, this sort of

functionality could be made available as a service to others to use as needed, when

needed. In the next section we highlight code from the MsgHandler agent to provide a

more detailed look at how the agents are constructed.

135

CoABS Grid MsgWatch

Archangel
Native XML

DB
Server MsgBroker MsgHandler(i) DisplayAgent GUI

startHandlerAgents(ATO, INTSUM, SearchPlan, SAFER, AIRORD)

registerInGrid("AtoHandler", "IntSumHandler", etc)

startBrokerAgent(agentName)

registerInGrid("MsgBroker")

startWatchAgent(agentName)

registerInGrid("MsgWatch")

startDisplayAgent(agentName)

registerInGrid("DisplayAgent")

getBrokerProxy(BrokerName)

urlConnection(URL, Keyword)

getLastModified()

addMessage(brokerName, Msg(i))

getHandlerProxy(HandlerName)

MsgBroker: returnProxy()

MsgHandler: returnProxy()

addMessage(MsgHandler(i), "Process Msg(i)")

getXMLMessage("msgURL")

extractEEI(Msg(i), XSL, EEI)

importToMOC(EEI, XSL, MOC)

transform(MOC, X3D, VRML)

render(MOC.wrl)

ATO
INTSUM

Searchplan
AIRORD

SAFER

Figure 33. Message Agents System Sequence Diagram.

d. Example Code
Below is a code snippet from one of the Message Agent classes

(MsgHandler). It first declares this class’ package name (i.e.,

navy.nps.archangel.message.handler). Next it imports the classes that provide the

necessary CoABS Grid functionality. For instance, the AgentRegistrationHelper class,

similar to the REPEAT agents, assists us in registering our MsgHandler agent in the Grid.

The reader may notice we imported no Jini classes in the MsgHandler agent. This is

attributed to the fact that this agent does not require a proxy of any sort from the Lookup

service. As a matter of fact, it only receives messages from a sending agent (i.e., the

MsgBroker). Next we arrive at the class declaration and notice that it implements the

A^

136

CoABS MessageListener interface. Recalling the REPEAT example, the

MessageListener interface defines only the messageAdded() method, and precludes the

agent from polling the MessageQueue for incoming messages.

The first functionality we see inside the class definition is a series of

MsgRetriever declarations. There is one MsgRetriever class used for each type message

we require. Its purpose, as one might imagine, is to fetch, or retrieve, the relevant

message from the database. In addition to the MsgRetriever declarations, we declare two

(XSL) Transform objects. These will be used to apply XSL style sheets to the different

messages. Finally, an AgentRegistrationHelper is declared to facilitate agent registration

in the Grid.

After some initial declarations we find the constructor for this class, and

observe that it accepts the agent name (delegateName) as a parameter. In the case of this

MsgHandler, we have “hard-coded” it to “AtoHandler.” Next, we register the agent with

the grid using the agent name we just assigned, and add the message listener so it will

“hear” incoming messages. With the MsgHandler initialized and registered, we are ready

to process incoming messages.

Inside the messageAdded() method we first get the raw text of the

message. Then we check to see if the raw text matches on of our message types, by

comparing it to a string value. If we find a match, we get the message from the database

using the designated MsgRetriever class, and then save it to file. After the file is saved to

disk, we perform our two transformations.

The first transformation uses, in the case of an ATO message, the ATO.xsl

to extract the EEI from the ATO.xml message file. The resulting, or output, file is called

AtoMOC.xml, and it is used to import ATO EEI into the MOC document. This is

accomplished by the second transform which uses the current MOC.xml file and the

Ato2MOC.xsl style sheet to import the EEI. The resulting file is the (updated)

MOC.xml.

The “else if” statement is repeated for each of the message type (e.g.,

ATO, INTSUM, etc.); however, for brevity, the remaining sections were not included in

the code snippet. Each section calls separate message retriever instances and uses

137

separate stylesheets to refresh the MOC. The main() method serves the same purpose as

it did in the REPEAT code snippet; that is, it instantiates the agent using the coded name.

(i.e., AtoHandler).
*
* ArchAngel project
* MsgHandler does the following:
*
* 1. Receives communication from the MsgBroker Agent saying that a
message
* is ready for download
* 2. Downloads the message by instantiating the MsgRetriever class
* 3. Uses JDOM and XSLT to parse the message into the key elements
* (XSLTransform)
* 4. Uses JDOM and XSLT to transmit the information into the Master
* Operation Context document
*
*/
package navy.nps.archangel.message.handler;

import com.globalinfotek.coabsgrid.AgentRegistrationHelper;
import com.globalinfotek.coabsgrid.Message;
import com.globalinfotek.coabsgrid.MessageListener;

public class MsgHandler implements MessageListener {

 MsgRetriever AtoMsg, IntsumMsg, AirordMsg, SearchplanMsg, SaferMsg;
 XSLTransform transform, transform2;

 private AgentRegistrationHelper reg;

 public MsgHandler(String delegateName) throws IOException {

 reg = new AgentRegistrationHelper(delegateName);
 reg.addMessageListener(this);
 reg.registerAgent();
 }

 public synchronized void messageAdded(Message msg) {
 try {
 System.out.println(“******* RECEIVED MESSAGE *******\n” + msg);

 String MsgHeader = new String(msg.getRawText());
 if (MsgHeader.compareTo(“Process ATO message”) == 0)
 {
 //Get message from the URL
 AtoMsg = new MsgRetriever();

AtoMsg.sGetXMLMessage(“http://131.120.179.192:8080/xincon/db/usmtf_mes

 sages/ato/ato_302100Oct2002_.xml”,”C:/ArchAngel/agents/ATO.xml”);

Package
declaration

Import grid
functionality

Declare MsgRetriever
for each message type

Register
handler
agent

Get ATO and
save to disk

138

 //Transform ATO.xml into the parsed document for entry into the MOC
 transform = new XSLTransform(“ATO.xml”, “ATO.xsl”, “AtoMOC.xml”);

 //Open the MOC file and append it using the ATOMOC.xml document
 transform2 = new XSLTransform(“MOC.xml”, “Ato2MOC.xsl”, “MOC.xml”);

 System.out.println(“MOC.xml updated with the latest ATO info”) }

 else if (MsgHeader.compareTo(“Process INTSUM message”) == 0)
 {
 //Get message from the URL
 IntsumMsg = new MsgRetriever();
 IntsumMsg.sGetXMLMessage(“http://131.120.179.192:8080/xincon/db/

usmtf_messages/intsum/intsum_300902Oct2002_.xml”,
 “C:/ArchAngel/agents/INTSUM.xml”);

 //Transform ATO.xml into the parsed document for entry into the MOC
 transform = new
 XSLTransform(“INTSUM.xml”,”INTSUM.xsl”,IntsumMOC.xml”);

 //Open the MOC file and append it using the ATOMOC.xml document
 transform2 = new XSLTransform(“MOC.xml”,”Intsum2MOC.xsl”,”MOC.xml”);

 System.out.println(“MOC.xml updated with the latest INTSUM info”);
 }

 //Code elided.

 .
 .
 .
 //The “else if” construct is repeated for each message type we are
interested in retrieving and transforming.

 }
 catch (Exception exc) {
 System.out.println(“Exception in messageAdded(): “ + exc);
 }
 }

 /** Main program. Instantiates an agent.
 **/
 public static void main(String[] args) throws IOException {
 if (args.length < 1)
 System.err.println(“Syntax: java MsgHandler AtoMsgHandler”);
 else new MsgHandler(args[0]);
 }
} //end class

E. SUMMARY

Our work developing agent prototypes demonstrated many of the concepts

discussed in the first part of the chapter. For example, Jini, built on Java technology,

provided us code mobility, and inter-agent communication. The Grid made it easier to

build and deploy agents who could be stored in a Lookup service and could find other

Extract EEI

Import EEI
to MOC

Same as
above.

Instantiate
handler agent

139

agents. Our research is just a beginning, and our agents only achieve simple tasks; still

we have demonstrated the relative ease at which agents can be developed and deployed to

support military operations. To this end, we have demonstrated support to military

operations in the following respects.

• Enhanced situational awareness

• Information from macro-level environments (GCCS-M) reduced and
aggregated to a mission specific scenario (i.e. Personnel Recovery)

• Operational Modeling and Simulation

• Delegation of tasks to software processes (agents) freeing humans to
concentrate on more complex responsibilities.

Future work for our agents includes converting the REPEAT agents into an XML

Web service and/or OWL-S.

Given the fundamental requirement to achieve and maintain knowledge

superiority, agent implementations will pervade. We look forward helping to realize the

enhanced capability agents will deliver the war fighters.

The key points of this chapter relate to the promise of agents and their

significance to the SWEB. The first part of the chapter described many of the attributes

and classifications of agents. The second part illustrated some concrete agents as

implemented in our research. Another more subtle point is the relative ease at which

agents can be developed and deployed.

Now that we have gained a deeper understanding of agent concepts and have seen

concrete examples, we are ready to delve into the knowledge-centric aspects of SWEB

components. Specifically, the next chapter discusses ontologies and how they specify or

frame knowledge. After we examine ontological concepts and examples, we move on to

elaborate on knowledge bases. Agents will prove critical to both of these components in

a SWEB application. This is where they will do more than listen, broker, and handle;

they will employ more sophisticated intelligence and decision-making capabilities.

140

THIS PAGE INTENTIONALLY LEFT BLANK

141

VI. ONTOLOGY: FRAMEWORK OF KNOWLEDGE

A. BACKGROUND
Nobody will ever categorize everything, but many people will categorize
some of it many times over, often in different and conflicting ways.

 -Aristotle

The purpose of this chapter is to highlight the importance of the ontology to the

SWEB. We will review the Web Ontology Language (OWL) and analyze the basic

components of an ontology. We will highlight ontology design criteria, methodologies

and various ontology design patterns. Our discussion will culminate by exposing several

of the challenges a developer will face while designing and deploying an ontology for

practical use.

There are as many definitions for ontology as there are methodologies and

markup languages to construct them. When searching for a widely accepted definition all

agree the term is borrowed from philosophy and metaphysics, and most agree with its

association to the nature of being and existence (Maedche, 2002, 13). One of the earliest

concerned with the “nature of being” and classification of objects was Plato and his

student Aristotle (Sowa, 2000, 356) (Maedche, 2002, 13). Aristotle’s work focused on

classifying subjects into groups using logic68. He discovered pure logic had limitations

and not all subjects were easily classified (Sowa, 2000, 356).

1. Ontology Defined

Merriam-Webster’s Dictionary states language at its basic level is a formal system

of signs and symbols organized to form terms committed to by a domain. An ontology at

its basic level is a set of terms and associated meaning built on a language or

representation. The ontology is both language and meaning (Obrst, 2003, 122). Obrst

establishes that “An ontology encompasses both meta data and domain theories,” where

the metadata describes the semantics [language] and the domain theory establishes the

relationships, attributes and constraints [meaning] of the model (Obrst, 122, 2003). By

constructing an ontology we are establishing the domain theory which all members of the

domain must commit. Commitment is the agreement by members of the domain to

68 Classification is one of the fundamental purposes of ontologies (Jasper, 1999, 5).

142

subscribe, reuse and extend the concepts and terms of the ontology. If domain

commitment is weak or absent, the ontology will be ineffective. The full potential of the

SWEB cannot be realized without commitment. In a sense, we are classifying the objects

of a universe of discourse into like groups, with agreement from the members of the

domain, similar to what Aristotle attempted to do.

2. Commitment
The importance of commitment extends much deeper than the set of lexical terms

used by an ontology. Commitment also extends to the ontology’s conceptual grounding.

To commit to an ontology means all observable actions69 are consistent with the

definitions prescribed in the ontology, and all members are in agreement to use the shared

vocabulary in a coherent and consistent manner (Gruber, 1993, 2). An ontology is an

explicit specification of a conceptualization, where a conceptualization is an abstract,

simplified perception of the world we wish to represent for some purpose (Gruber, 1993,

1-2) such as use by information systems and their proxies. This use must be enabled

from the basic syntax through the taxonomy or organization, to the most complex

concepts and processes. Information, knowledge, and web based systems are already

committed to some conceptualization upon design, whether explicitly or implicitly

(Gruber, 1993, 1). Therefore, to ensure a successful implementation of an ontology, it

must be part of the explicit commitment.

Within the military, albeit more standardized than the civilian world, disciplined

commitment to a domain theory or theories will be a daunting challenge. However, since

the military is built on doctrine, and doctrine is a baseline for many activities, a doctrine

based domain theory provides a promising start point for the origination of this explicit

commitment. The problem with doctrine is tactics, techniques, and procedures derived

from operational experience will always trump the doctrinal baseline. Doctrine is what

we read and teach, and not precisely what occurs in “real world” operations. This

deviation from doctrine can be termed practical drift.

69 Actions regard the unambiguous, consistent interpretation and usage of a term or concept described

in the ontology. There must be no circumstance in which an action occurs inconsistent or contradictory to
its description in the ontology.

143

For the purposes of this work we will adopt Obrst’s definition of an ontology

which is a vocabulary expressing entities and relationships of a conceptual model for a

general or particular domain along with the semantic constraints on that model which

limit what the model means (Obrst, 2003, 122). More succinctly put, ontologies provide

the meaning and the context for the domain so computers can understand, or at least

interpret meaning from a given set of ontologically defined terms.

B. THE WEB ONTOLOGY LANGUAGE (OWL)

Since ontologies will provide the meaning to the applications of the SWEB,

deciding on an ontology language recommendation was a necessary step for the World

Wide Web Consortium (W3C). From the requirements, the Web Ontology Language

(OWL) emerged as W3C’s choice for the ontology language of the SWEB. An ontology

language like any other language must be firmly based on practical usage and rooted in

proven baseline concepts. Figure 34, The Semantic Wave, demonstrates the solid

grounding OWL inherited from proven concepts and technologies such as XML,

Resource Description Framework (RDF), Resource Description Framework Schema

(RDFS) and especially the DARPA Agent Markup Language + Ontology Interface Layer

(DAML + OIL).

Semantic Web
Technologies

Figure 34. Semantic Wave (After: Berners-Lee, 2003).

144

The DAML+OIL program was the well established ontology language and

predecessor to OWL. DAML+OIL imparted many years of valuable practical usage and

implementation experience to the OWL initiative. The maturity and experience of the

DAML+ OIL program catalyzed OWL’s rapid movement from a working draft to a

pending recommendation. These technologies, to the credit of the developers, were not

discarded in favor of something new, but their strengths were leveraged and retained as

part of the OWL Recommendation.

It is worth mentioning the importance of XML to OWL and the larger SWEB

movement. When XML emerged it was considered a “Concept elegant in its simplicity

driving dramatic changes in the way Internet Applications were written” (Birbeck, 2001,

1). It has in fact performed as expected and is only now starting to gain wide spread

adoption and momentum. Within the Military and DoD XML initiatives are gaining

momentum as well. The USMTF Message program is continuing work on establishing

XML schemas and formats for all the USMTF messages. The Battlefield Management

Language (BML), an unambiguous language derived from XML used to control forces

and equipment, is also being developed for the Army (Carey, 2002, 1). Behind the

scenes XML is starting to reach critical mass. Just as XML has started to prove its value

to industry, the developers of OWL leveraged XML’s stability and functionality

incorporating it into OWL. XML is one of the foundations from which the SWEB will

be built.

Figure 35, the Semantic Layer Cake, provides a more intuitive view of the

foundational technologies and their contributions to the OWL language. This figure

demonstrates how the supporting technologies have contributed to the finalization of

OWL, as OWL is built on top of their existing and functional foundations.

145

DAML+OIL
OWL

Figure 35. Semantic Layer Cake (After: Berners-Lee, 2001).

OWL was designed for use by applications required to process content as opposed

to the traditional role of presenting it to human users (McGuinness, 2003, 1). As we have

discussed above OWL takes its foundation from many different proven technologies.

OWL at the syntax level adopts a frame-like style, where the information about a class or

property is given one large syntactic construct, instead of being divided into several

atomic chunks, or triples (Patel-Schneider, 2003, 7). The concepts of class and property

will be described at length later. For now, consider both properties and classes as two

foundational components of an OWL ontology. The ‘large syntactic construct’ OWL

employs lends an embedded organization or taxonomy within a given OWL ontology.

This organization creates a more human readable product. The ‘syntactic construct’

embedded in OWL is illustrated in Figure 36.

The example ontology used in Figure 36 is taken from a larger ontology in the

Tactical Routes domain. A Tactical Route is defined as a planned direction of travel by a

small unit through a semi-permissive or non-permissive environment. One of the

concepts important to Tactical Routes are descriptions of Manmade Terrain Features.

The complete description of the owl:Class Manmade Terrain Feature is located

conveniently in one large construct shown in Figure 36. The directed graph on the right

illustrates the same syntactic construct exposing the embedded hierarchical structure in

visual form. Both constructs are equivalent.

Trust

Proof H ■
Logic 1

framework H
1

Rules H 5-

y

Ontology M LLJ

RDF Schema 1 i
RDFM&S 1 1

.amespaces

146

To reinforce this point, we will step through the OWL class description of

Manmade Terrain Feature in order to explain its content. The first owl:Class establishes

Manmade Terrain Feature as a class in our ontology. Next owl:Class Manmade Terrain

Feature is declared a subClassOf: Terrain70. The rest of the syntactic construct

exhaustively enumerates the members belonging to the Manmade Terrain Feature Class

by the restriction on the property Consists of. The restriction states that the members of

the Manmade Terrain Feature must be members of the classes Structure, Lines of

Communication and Manmade Hydrologic Feature.

Syntactic
Construct

“Manmade Terrain Feature

Code View

Figure 36. OWL Syntactic Construct.

1. OWL Features
We have now demonstrated how OWL embeds a taxonomic organization into the

ontology through the illustration in Figure 36. What other beneficial features does OWL

offer its potential users? To demonstrate some of its features let us take a closer look at

the OWL language and see why it will be one of the important Knowledge

Representation frameworks of the SWEB.

a. OWL Sub-languages
OWL is a flexible language providing different implementation options to

users. The family of OWL is decomposed into three sub-languages: OWL Lite, OWL

70 We will discuss the design of the class hierarchy in detail in a later section. For now we are

concerned with only the assertion of concepts and classes within the ontology.

Manmade Terrain Feature Class
Axiom and Hierarchy

 E

qu
iv

al
en

t
Manmade Terrain

Features

Structures Lines of
Communication

Manmade
Hydrologic
Features

subClassOf

Class Axiom: Manmade Terrain Feature Consist of:

Syntactic Construct

147

Description Logic (DL), and OWL Full. Each of the OWL sub-languages embodies a

trade off between simplicity, decidability71 and expressiveness. In general, the more

simple the construct of the language the least expressive it is. While a gain in

expressiveness is considered desirable in some applications, expressiveness sometimes

disqualifies any computational guarantee. Figure 37 below shows the expressiveness

versus complexity continuum present in the OWL family of languages. In the next

section we will discuss each of three OWL sub-languages in more detail.

OWL

OWL
Lite

OWL
FullOWL

DL

subClassOf

Expressiveness
Least Most

OWL+ Sublanguages

•Classification
•Simple
Constraints

•Complete and
Decidable in
Finite time

•Maximum
Expressiveness

•No Computational
guarantee•Description

Logic based

OWL

OWL
Lite

OWL
FullOWL

DL

subClassOf

Expressiveness
Least Most

OWL+ Sublanguages

•Classification
•Simple
Constraints

•Complete and
Decidable in
Finite time

•Maximum
Expressiveness

•No Computational
guarantee•Description

Logic based

Figure 37. Web Ontology Language Hierarchy.

(1) OWL Lite. OWL Lite should be the choice of users who

want a mechanism specializing in establishing a classification hierarchy (McGuinness,

2003, 4). OWL Lite was designed for easy implementation by providing users a subset

of constructs with which to become familiar and to catalyze tool development (van

Harmelen, 2003, 5). OWL Lite only provides the constructs for a subclass72 hierarchy

71 Decidability is defined as the ability to resolve a logic or computational operation in a finite time.
72 Subclass is a more specific, subordinate (at a lower level) in a class hierarchy.

148

and limited value cardinality (van Harmelen, 2003, 44). The only cardinality73 explicitly

stated within OWL Lite is 0 or 1. OWL Lite is the simplest to use and least expressive of

the OWL sub-languages providing only classification and simple constraints.

(2) OWL DL. OWL DL is an extension of OWL Lite. OWL

DL is the choice for users requiring more expressiveness than OWL Lite while retaining

computational completeness and decidability for use with reasoning systems (Smith,

2003, 5). OWL DL was designed to support the existing Description Logic business

segment (Smith, 2003, 5). OWL DL and OWL Full subscribe to the same vocabulary,

but OWL DL has additional restrictions which give it desirable computational properties

(van Harmelen, 2003, 43). OWL DL provides the most expressive options while

preserving computational guarantees.

(3) OWL Full. OWL Full contains all the constructs of the

OWL Language and provides free and unrestrained expressibility (van Harmelen, 2003,

41). OWL Full, unlike OWL DL allows classes to be treated like individuals and allows

the ability to differentiate between instances74 (van Harmelen, 2003, 42). OWL Full has

direct mappings to the RDF constructs. For instance, the embedded meta class owl:

Thing is equivalent to the top level RDF construct rdf: Resource and owl: Class is

equivalent to rdfs:Class. This direct mapping while preserving the meta modeling

properties of RDF, causes the loss of any computational guarantee (van Harmelen, 2003,

42).

2. OWL Relationships
Since we have been exposed to the OWL sub-languages let us look more closely

at the relations existing between them. To begin, Figure 37 does not accurately capture

OWL’s true relations and is somewhat misleading. Figure 38 better illustrates the

relationships of the sub-languages from an ontology classification and the set of possible

conclusions drawn from reasoning against it. Since both threads are similarly interpreted

73 Cardinality is a numerical restriction on an allowable number or allowable range of numbers.

Cardinality can be established for Minimum, Maximum, or Exact values.
74 An instance is defined as the atomic level of an ontology.

149

we will not discuss both. The reader may simply substitute conclusion for ontology and

derive the same results.

From the ontology perspective every OWL Lite Ontology is a legal OWL DL

Ontology (Smith, 2003, 5). In this case, OWL Lite is more specialized by exclusion.

OWL Lite assumes its specialization by further constraining the language constructs of

OWL DL. As we have stated above, OWL Lite is the simplest, or most constrained, and

least expressive of the OWL sub-languages. Another way to view OWL Lite is as the

most specialized of the OWL sub-languages. OWL DL follows similarly, as it can be

viewed as a more highly specialized version of OWL Full, also by exclusion (Smith,

2003, 5).

When examining OWL Full it is important to note it is not a formal sub-language

(van Harmelen, 2003, 41), but is actually an alias for the family of OWL languages.

OWL Full contains all the constructs for the OWL language (van Harmelen, 2003, 41)

and, therefore, OWL Full is equivalent to OWL if we are referring to OWL as a super

class.

OWL Lite
Ontology

OWL DL
Ontology

“Is- a legal ”

OWL Full
Ontology

OWL
Ontology

Anonymous
Class

“Is-a Legal”

OWL Lite
Conclusion

OWL DL
Conclusion

OWL Full
Conclusion

“Is-a Valid”

“Is
-a Valid” ≡

≡
OWL

Conclusion

Anonymous
Class

Ontology

Conclusions

From

Rea
soning

Figure 38. OWL Sub-language Relationships.

150

3. Description Logic Foundation
The goal of an ontology is not to end with the description of the domain of

discourse, but to end with a machine interpretable/computational model of the domain of

discourse. To achieve this goal a form of logic programming must provide the

underpinnings for the OWL language constructs. This embedded logic is the anchor

point to which the concepts and properties are attached enabling the computer to interpret

and reason. The OWL language75 is no exception, and bases itself on Description Logics

(DL).

DL is a family of Knowledge Representation (KR) formalisms representing the

knowledge of a domain by defining relevant concepts and then using the concepts to

specify properties of objects and individuals occurring in the domain (Baader [DL

Handbook], 2003,43). DLs have a formal, logic based semantics and support reasoning

as a central service (Baader [DL Handbook], 2003, 43). DLs have a model-theoretic

semantics and both the concepts and instances usually can be expressed in pure, first

order logic76 (Baader [DL Handbook], 2003, 46). Therefore, a DL language can be

considered “first order logic plus”, due to the fact it is more expressive than First Order

Logic. It is important to understand that OWL’s DL underpinnings are abstracted from

the user by the OWL’s embedded syntax. The purpose is to simplify the construction of

ontologies and make it user friendly so domain experts can readily perform this task. For

the SWEB to be realized domain experts, not knowledge engineers, must be the ones to

construct and maintain the ontologies.

C. COMPONENTS OF AN ONTOLOGY

There are many different terms used to describe the atomic components of an

ontology. The terms we will use through out this work are the terms contained in the

Web Ontology Language (OWL) Reference (Van Harmelen et al., 2003, 9), as this will

be the World Wide Web Consortium’s (W3C) recommendation for an ontology language.

At the time of writing this work the OWL Recommendation was in last call with all

indications endorsement was forthcoming. Since the recommendation is pending, we

75 Includes all sublanguages: OWL Lite, OWL DL and OWL Full.
76 There are some exceptions. The DL Handbook states that when this is the case some extensions

may be applied to the First Order Logic to accomplish the required expression.

151

consider OWL to be the ontology language most likely used by the military user and

developer community. Because of this, we will be discussing ontology components and

demonstrating their usage and functions exclusively in terms of OWL. It is important to

note our research was not limited to OWL, it is only because OWL is intended to be the

standard we give it our focus. However, where applicable the terms and concepts used

by the Artificial Intelligence (AI) community will also be addressed as potential

synonyms, as they are widely encountered in literature addressing this subject.

Before beginning our discussion on designing an ontology it is necessary to

address the components of an ontology from a high level view. Liken this to flying over

an ontology and looking down from an aircraft at 10,000 feet, and what you can see will

be the subject of the discussion. This high level view is intended to assist us in readily

identifying the fundamental components of an ontology and associating basic functions

with them. Many will recognize this technique as one used by the Object Oriented (OO)

community when decomposing highly complex entities to a set of classes and objects

(Booch, 2001, 36). Many of the methodologies to be discussed later will begin by

identifying objects in a given domain and classifying them as one of the components of

an ontology; therefore, to understand many of the methodologies we must be able to

identify an ontology’s basic elements.

1. Basic Components of an Ontology

a. Classes
Classes are the fundamental building block of ontologies and the most

readily identifiable within a given universe of discourse. Much of the literature attempts

to describe classes in a very formal way; however, a class can be roughly determined by

asking some pre-competency questions. The first question to ask is, “Do I care about the

given concept?” If the answer is “yes” then a follow on question must be asked. The

follow on question is, “Do I need to know about this concept for my specific purpose?”

If the answer is “yes”, it is likely you have discovered a viable class for a given domain.

Now apply the formal definitions as a cross check to ensure the potential classes are in

fact viable classes and compliant with the formalizations. Now that we have discussed

the informal identification of classes, let us continue with a formal definition.

152

Classes in an ontology, as with the OO methodology, provide a means to

classify and abstract resources with similar characteristics (Booch, 2001, 103) (Van

Harmelen, 2003, 55). Classes are also referred to as concepts (Noy, 2001, 3) or entities

(Obrst, 2003, 125). Classes are the concepts within the domain of discourse that require

describing and defining so all other classes can be grounded. Classes can range from

general to very specific and highly specialized (Noy, 2001, 6).

To illustrate what we have discussed so far imagine we are interested in

creating an ontology for the domain of Military Routes for later implementation into a

system required to classify Military Routes into various categories. The subject of

Military Tactical Routes is particularly suited for description in the ontology because of

the high degree of expertise required to plan and navigate a tactical route successfully.

The Tactical Route ontology will capture the view of the expert navigator so the

knowledge embedded within can be transferred and shared among non-experts. For now,

we are interested in describing the different types of Tactical Routes. Tactical Routes can

be a candidate for a class in our ontology. The potential class of Tactical Routes satisfies

our pre-competency questions described earlier and meets the formal definition of an

ontological class. The class of Tactical Route might be the most general type of class we

will identify for our specific interest.

What other types of Tactical Routes are there? What about Dismounted

Tactical Routes and Mounted Tactical Routes. Both can be considered Tactical Routes,

although they are more specialized. A Mounted Tactical Route implies a route used by

vehicles, while a Dismounted Tactical Route implies use by foot traffic. This

specialization implies a position lower on the hierarchy than our general class of Tactical

Route. These potential classes clearly satisfy our pre-competency questions, so they are

good candidates for inclusion in our Tactical Route ontology.

To visualize our newly established classes we can use a directed graph. A

general directed graph consists of nodes and arcs. Nodes are the circles and arcs are the

lines connecting the circles. Classes will take the role of a node on a directed graph.

153

Since we have not established the ontological component that fills the role of the arc yet,

a directed graph is not of much utility at this point. Nonetheless, Figure 39 illustrates our

example thus far.

Class
Tactical Route

Concept

Class
Dismounted Tactical Route

Concept

Class
Mounted Tactical Route

Concept

Military Route Domain

Figure 39. Military Route Class Identification.

In the OWL Recommendation the highest level class or meta-class is

predefined for us. In OWL the class “Thing” (owl:Thing) is the top level class of which

everything described in OWL is a member (Smith et al , 2003, 10). Each time a user

declares a class within the OWL constructs it becomes implicitly a subclass of owl:Thing

(Smith, 2003, 10). Because OWL has defined the highest level meta class as “all

individuals”, the complement or the OWL class “Nothing” (owl:Nothing), or the empty

set is also defined for us. This follows the logic that an ontology describes concepts in

terms of other defined concepts in the domain. If owl:Thing describes everything, it is

quite simple to draw the conclusion that owl:Nothing describes nothing. More formally,

“nothing” described in OWL can be a member of the class owl:Nothing.

Classes are further described by developing class descriptions which are

used to determine membership to the class (van Harmelen, 2003, 10). The members of a

given class are called the class extension. Class extensions can be made up of either

instances or other classes depending on the level of abstraction the class represents.

These descriptions remind us that classes represent concepts and not the term used as the

name for the class (Noy, 2001, 13). The name for the class can change, but the class

154

concept defined by the description should remain the same if the concept is complete. In

other words the term should be independent of the concept’s meaning. The OWL

Reference allows six types of class descriptions (Van Harmelen, 2003, 10):

• class identifier in the form of a URI or URL reference

• exhaustive enumeration of individuals whose collective membership form
the class

• property restriction

• intersection of two or more classes

• union of two or more classes

• complement of a class description

b. Subclasses
Now that we have exposure to what it means to be a class of an ontology,

we now have to look at the level of abstraction we require the class to possess for our

purposes. To accomplish this we can ask another pre-competency question from the top

down. “Can the most general classes we have identified be further specified?” If the

answer is “yes”, and our application will benefit from the increased specificity, then we

should establish a subclass of that class, as long as the most specific class “is a” kind of”

the most general class (Noy, 2001, 12).

The same is true for the most specific of the classes we have identified

taking the bottom up approach. The pre-competency question for this would be, “Is there

a generalization that this specific class could belong that we care about?” If the answer is

“yes”, we should look to further abstract the class, and as long as the most specific class

is a “kind of” the most general class, the subclass is valid. Before establishing subclasses

we must be sure our application will benefit from either the increased generalization or

specialization. If a clear benefit is not evident, then careful consideration should be given

before establishing subclasses. The organization of classes will be explained in greater

detail in a later section.

In keeping with the directed graph visualization let us update the

illustration of our Tactical Route Ontology. In a directed graph, sub classes are also

nodes although they are subordinate to the more general classes because they are

155

themselves classes. For our Tactical Route example it is clear both Dismounted Tactical

Route and Mounted Tactical Route are specializations of the more general Tactical Route

(See Figure 40). Since our application will be charged with classifying various Military

Routes we can realize some benefits from this specialization. However, how do we show

on a directed graph that these sub classes are related to their parent class? Properties are

the answer and they take the form of arcs in our directed graph.

Class
Tactical Route

Most generalized
concept

Class
Dismounted Tactical Route

Class
Mounted Tactical Route

More Specialized
concepts

Sub-
Classes

Military
Route

Domain
Properties Properties

Figure 40. Military Route Sub-Classing.

c. Properties
Properties are the glue that connect classes and establish relationships

within an ontology. Properties are also referred to as slots or roles within the AI

Community (Noy, 2001, 3). Properties establish the internal structure of the concepts

(Noy, 2001, 3) and assert facts about the members of the classes (Smith, 2003, 15).

Within the OWL constructs there are two types of properties, Object Properties (owl:

ObjectProperty) and Datatype Properties (owl:Datatype Property). Object Properties

have a value range of class individuals and link instances between two classes (Smith,

2003, 15). Datatype properties have a value range of data values linking instances to data

values in the form of literals or XML Schema datatypes (Smith, 2003, 15).

156

(1) Restrictions on Properties. To define a property we must

restrict what the property is relating or connecting to ensure it can be resolved to those

classes. The OWL language accomplishes this in two ways, either by specifying the

domain and range of the property, or by defining the property to be a specialization or

sub-property of an existing property77 (Smith et al., 2003, 15).

(2) Specifying Domain. When specifying a domain we are

asserting the domain values of this property must belong to the class extension of the

class description. Such assertion is called establishing a domain axiom (van Harmelan et

al, 2003, 26). Domains can be thought of as the class extension belonging to the node

where an arc or property originates in terms of a directed graph. The OWL language also

allows multiple domain axioms to be asserted. When this is done it should be treated as

the intersection of the class descriptions the property relates (van Harmelan et al, 2003,

26). Simply put by asserting a domain we are restricting the set of classes eligible for a

property to be assigned.

(3) Specifying Range. When specifying the range we are

asserting the instances of a class are linked to either a class description or a data range.

Such an assertion is called establishing a range axiom (van Harmelan, 2003, 27). Range

can be thought of as a class extension or datatype belonging to the terminating node in

terms of a directed graph. Simply put, by asserting a range axiom we are restricting the

class extensions or datatypes eligible for a property to be assigned.

When we view the domain and range in terms of our example on a

directed graph we can illustrate how a property is resolved to the respective classes by

asserting our domain and range restrictions. With our example we chose to use the

subClassOf property which is an embedded construct within the larger OWL construct78.

Since subClassOf is embedded, the domain and range restrictions are encapsulated in the

77 We will not cover subPropertyOf embedded property in this work. There are other formalizations

within the OWL recommendation providing more advanced property restrictions we leave to the reader to
study. The OWL Web Ontology Language Reference and the OWL Web Ontology Language Guide
provide detailed explanation of allowable constructs. This work is concerned with showing enough of the
basic constructs of OWL to show its value.

78 OWL has 20 such embedded constructs (Patel-Schneider et al., 2003, 18-19).

157

logic abstracted by RDFS term subClassOf. Therefore, by asserting Dismounted Tactical

Route is a subClassOf Tactical Route we have declared our domain and range restrictions

automatically. In this case in order to be a Dismounted Tactical Route one must first be a

Tactical Route. For illustration purposes only we will declare our domain and range

explicitly for this example (See Figure 41).

Class
Tactical Route

Class
Dismounted Tactical Route

Class
Mounted Tactical Route

Sub-Class

C2 C3

C1
C2 is a subset of C1

⊆C1 C2

Role Value Map

⊆C1 C3

Role Value Map
C3 is a subset of C1= C2 is a

 subClass of C1
= C3 is a

 subClass of C1

 “is
 a

kin
d o

f” “is a kind of”

Logic English Logic English

Arcs are Properties

Domain: C2
Range: C1

Domain is restricted to the
class extension of C2,

Domain is restricted to the
class extension of C3,

Domain: C3
Range: C1

Range is restricted to the
class extension of C1.

Range is restricted to the
class extension of C1.

Figure 41. Properties.

To further examine our directed graph example notice that the arcs

now represent the property. Listed along each of the arcs are the words “is a kind of.” If

an ontology developer wants to test the validity of a subclass, he should form a sentence

with “is a kind of” between the two concepts and if it is true, then it is a subclass. For our

example in Figure 41 our sentence would read, “Dismounted Tactical Route ‘is a kind of’

Tactical Route.” Since this is true we have a valid subclass.

Another important detail to note about the Figure 41 is that it also

depicts the exposure of the logic underlying the embedded concept subClassOf. It is

important to reiterate the foundation of OWL is found in formal Description Logics. The

158

syntax of OWL is a high-level abstract syntax with a model-theoretic semantics to

provide formal, logical meaning (Patel-Schneider et al, 2003, 1)79. The abstract syntax is

designed to make OWL easier to use and hide the complexity.

d. Instances
There are many who would argue instances or facts are not part of the

basic elements of an ontology. Ontology Development 101: A Guide to Creating Your

First Ontology by McGuinness and Noy consider instances as a step in ontology

development, but when classifying elements of an ontology they treat instances as

separate. McGuinness and Noy state an “Ontology together with a set of instances

constitutes a knowledgebase (Noy, 2001, 3). Instances for the purpose of this work will

also be treated as separate, but there are cases in which we will treat them as part of the

ontology. Instances must be created from the constructs of the ontology; therefore, they

cannot be treated totally separate and must be considered during design and

implementation. It may be helpful to think in OO terms that instances of an ontology

instantiate the ontology and the ontology, in return provides the containers for the

instances to reside. The containers would be the class structure which also allows the

instances to inherit meaning from the class descriptions. Therefore ontologies and

instances have a symbiotic relationship. Now that we understand how we will treat

instances in this work let us look at some formal definitions of what instances are and the

roles they fill.

Instances are considered objects extensionally defined, or defined with

regards to their existence based on a given ontology (Maedche, 2002, 63). Instances, also

called individuals, are members of class extensions and are the relevant raw materials by

which to extract intensional meaning (Maedche, 2002, 63). The OWL ontology provides

the mechanism by which to describe the classes the instances belong and the properties

they inherit by virtue of their class membership (Smith et al., 2003, 10).

At the document level an OWL instance is simply and XML document.

The XML tag set is derived from the classes and properties that make up the ontology.

79 OWL Ontology Language Semantics and Abstract Syntax contains two model-theoretic semantics.

One is a standard model-theoretic semantics for OWL and the other is for RDF semantics.

159

Just as was stated in the previous section the instances bring the intensional meaning to

the ontology. Figure 42 is a sample instance document and its corresponding Domain

Concept Tree (DCT) from which the marked up, text based ontology was derived. Pay

close attention to how the instance tag set is derived from the classes and properties of the

ontology80.

Capabilities

Descriptor

Element
EnagagementRangeCapabilityElement

Figure 42. Instantiation of an Ontology.

At the concept level an instance is simply a fact. A fact makes assertions

about a domain of discourse. These assertions are considered true, until proven

otherwise. Facts can be combined to inject both extensional and intensional meaning into

an ontology. When this technique is used it can either be viewed as a knowledge base, by

definition as we shall see in the Knowledge Base chapter, or a reinforced ontology. For

80 The ZSU 23-4 instance is taken from a Threat Anti-Aircraft System Ontology which we cover later
in depth.

Instance Document
tTxml ^ersiofi="T 0" eficodin9="UTF-S"'s
<ThrefltCflpabllityxmlns raf-"fittp//www w3or^T999/02Q2-rdf-iyntttPt-Dsrxmlns'"http//T3T T

i^nliAircranSyslem rdf ID="ZSU 23_1">
<h asS/sremDescripror>

* M obilityClassiflcation > Self_Pro[wll«t*yM a bilityClassiflcatia n >
<ArrnarnenlCla33illcilion'Anliaircrsfl_Arlillery-;''irmarnenlCla33illcilion'^, »••■■"■■
<RaiiarCias5ifai:fion>Tarjef AcoLiisrfHjnf^vRaaarCiassifi|i:[iarfci. *•■ ■'"

<yhasSysrsmDsscfiprQf^ .•»■■'*""""
*h asC a D a t: ililieg D eg cnplc r; ^ ■ "•'

Sample
Ontology

lfMbiHiM_]
CONAntafaart_

Caaib«iM_
Descnptor J

< VsfticalE n gagemen rRan gsValussS 1 i}i}<A'eftica£n gagsmen [Ran gsValu t>
' H oriza nlaE n gagemenlflfln geValu e> 7<i<i<i'IH a riza nlalE n gflgemenlHfln geValu e>

<fE n gagemenlRa n geC ap ability>
<5ensdrT7angeT

Rfld a rflangeCap ability
< Rad arRan geValu e>2()()()<i'RadarRan geValuE^

<yRfl[|flrRan jeCao flbilrly>
<VisualAu d ibleRan gsCap ability>

^Visu alA u d ibleRa n geVslue>10[)0<A^isLjalAudibleRarLgeValue>
WsualAu d ibleRanBeCapabilitys

^VSenaof Range* TnttantintPt <MQbiirtycapabiirty> iDsraDiiares
<MobilrtySpeeiJVfllue>50</'.1obilrtySpe«fVBH>e> (5100)
<U QbiliTyRan gtUalLit>4SQ'/M QDiliTyRan geUaluft*

</rHlabilityCapability>
<j'h isQ ap abililiesD e3criptor>

<^AfiiiAircrafiSysiern> ,
4/Thr«BtCBpBbility>

iDstRDtiates
(7000)

t
•ubcUMor

/ \

Anon

LSOf

#Verticai_
EngB0mf^_
Rangt^Vaije

y^
sutCMtOf

X
En^aynent_
Ran9e_Vaiue

160

our view we will adopt the latter. Even when seeded with a number of facts the ontology

can only provide meaning based on facts asserted and described. Asserted and described

facts are used to support additional fact assertions about other facts and assist with the

discovery of implicit subsumptions81 required by the application. In this case the pre-

asserted facts are more intuitively aligned with the ontology discussion rather than

waiting to include it in the knowledge base discussion.

e. Structure
A key aspect of an OWL ontology is its structure. Recall an ontology, in

general, is a technique employed to represent knowledge about a domain of discourse.

How we choose to organize the knowledge, or the classes which form the concepts that is

the knowledge, becomes the structure of the ontology. Structure is simply a mechanism

to visualize parts of a complex system and the relationships among those parts (Booch,

2001, 12) so humans may better understand it. In Chapter II we established knowledge

as a complex concept (Obrst, 2003, 104) (Davenport, 2000, 9) (Reidl, 2002, 45).

Complex concepts naturally are grouped into hierarchies (Booch, 2001, 9). Description

Logics, the logical underpinnings of OWL, also rely on hierarchies to establish

subsumptions (relationships between classes and subclasses) and classifications. From

these facts about the organization of complex concepts and the criticality of hierarchies to

DL, we can conclude that in order to be efficient, an OWL ontology must have an

intrinsic, hierarchal organization82.

To further support this concept we know OWL ontologies consist of

classes and properties at the highest level of abstraction. Since there are levels of

specialization implied by the degrees of abstraction, classes must be the entities forming

the hierarchy of the ontology. In fact from “10,000 feet” one is able to discern a clear

class hierarchy beginning at the top with the most general classes and ending at the

bottom with the most specific subclasses. These classes are connected by properties that

81 Implicit subsumptions will be covered in the Reasoning Section of the Knowledge Base chapter.
82 There are some who design ontologies to contain more horizontal relations much like a Relational

Database Entity Relationship Diagram. When designers of ontologies choose to design in this manner they
lose some of the real power of ontologies such as inheritance, subsumption and multiple inheritance which
the hierarchy provides.

161

may or may not be restricted with cardinality constraints. One should be able to visualize

the instances instantiating the class extensions at the termination points of datatype or

object properties. Hierarchical structure is a key enabling element of an OWL ontology.

The hierarchy embedded within an ontology is most visible by viewing the

basic taxonomic structure or “skeleton” of the ontology reflecting only the concepts or

classes. Figure 43 depicts the embedded hierarchies present within the Dismounted

Ground Tactical Route Taxonomy. Notice how the level of specificity in the classes is

more general in nature at the top of the hierarchy and increases as we near the bottom.

Notice also how multiple hierarchies exist within a single ontology.

More
General

More
Specific

Multiple Hierarchical Structures

Figure 43. Embedded Taxonomic Structures within a Concept View of an Ontology.

162

D. ONTOLOGY DESIGN

1. Design Criteria
Thomas Gruber made the statement, “Formal ontologies are designed and, when

we choose to represent something we are making design decisions” (Gruber, 1993, 2).

So, before engaging in discussions involving specific patterns, techniques, and

methodologies used to design effective ontologies, we must first review the general

design decisions used to test, evaluate and guide us in the design process (Gruber, 1993,

2).

The design criteria we will analyze are consolidated from multiple sources, and

what we present are the design criteria most applicable to military developers and users.

Adherence to the general design criteria will help us avoid interoperability and reuse

problems between ontologies.

a. Domain and Scope
In our definition of ontology we explicitly state that ontologies provide the

meaning and context for a given domain. Therefore, to begin the ontology design process

we must define our domain and establish the portion of the world we intend to model

(Obrst, 2003, 127). Ontology developers must establish the likely boundaries and the

scope of the target domain for the design to be effective. The boundaries of the domain

may change during the design process, but it is often useful to establish a predicted

domain from which to bound the initial scope of the design (Noy, 2001, 5).

It is important during our design process to make as few claims as possible

about the domain allowing users and developers the opportunity to extend and instantiate

the ontology as required (Gruber, 1993, 3). Problems relating to ontological commitment

can be minimized by asserting the weakest theory (fewest claims) and still

communicating the desired aspects of knowledge to drive the application (Gruber, 1993,

3). By attempting to contain all possible knowledge about the domain, a developer risks

establishing too strong of a theory, limiting the flexibility of the ontology developer and

user forcing them not to commit, or even consider using a given ontology (Noy, 2001,

19). Noy and McGuinness suggest the useful heuristic of only generalizing or

163

specializing at most one extra level above and below the target granularity for the

application (Noy, 2001, 19). Creating an ontology with as few claims as possible about

the world is the designer’s objective in order to maximize reuse and commitment. The

bottom-line for a designer is not to represent any more in the ontology than what the

application requires.

Let us apply this design principle to the ontology derived from the

Dismounted Tactical Route Knowledge Module shown in Figure 43. First and foremost,

we must establish the domain for this ontology. Unquestionably, our first impression

indicates this ontology describes some concepts contained in the Military domain, as

determined partially by the name, if we assume the designer used a descriptive naming

convention. While some general members of the military domain will find this ontology

useful, most will not since this ontology is targeted at a more specific user group of the

military. Figure 44 below reveals the target users of this ontology to be the highly

specialized group of Tactical Land Navigators. Tactical Land Navigators are the small

unit leaders in Light Infantry or Special Operations Units. The target domain user would

likely be able to relate to an ontology such as this, as it was written specifically for their

use, in their specific language. It should be evident by bounding our domain our user

group is more clearly revealed so the ontology can be specifically tailored to their

system’s requirements. In essence we have identified our expected user profile

(McGuinness, 2000, 6) which still requires further investigation to uncover the specific

purpose for which this ontology will be used.

Military

Route
Planners

Tactical Land
Navigators

(Small Unit Leaders)

Ontology Domain

Targeted
Domain

Figure 44. Domain Determination Example.

164

b. Purpose
Ontologies enable explicit, logic based representations of domain

conceptualizations capable of being interpreted by both humans and machines.

Ontologies should be designed for a specific purpose, usually to answer specific

questions about a domain. Let us discuss the reasons an ontology might be implemented

and some potential use cases within the military. We can use this preliminary discussion

as necessary background that will assist us in our upcoming classification discussion.

2. Potential Military Uses of an Ontology

a. Command and Control
There are many potential uses for ontologies within the Military Domain

similar to industry. With the development and maturity of the SWEB the ontology will

be the cornerstone technology which shares a common understanding of a domain among

humans, agents and machines. Ontologies for Command and Control Systems will be

instrumental in establishing a Common Operational Picture (COP) among units by

making domain analysis and assumptions explicit (Noy, 2001, 1). Agents assisting

commanders with the Command and Control task have the ability to interpret data and

know what in means based on the ontology.

b. Logistics
Ontologies can be applied to military logistics operations. An ontology

could describe logistic processes in OWL-S and enable it as a SWEB Service. Not only

can OWL-S describe simple atomic processes, but complex composite processes as well.

A composite process is made up of more than one sub-process. The Ontology could

include everything from reordering of ammunition to the procedures for coordinating its

delivery on the battlefield. Service Description Languages like DAML-S and OWL-S are

some of the newest ontology languages to be researched, but once realized will have

great utility in this area.

165

c. Decision Support Systems
Some of the current applications of ontologies within the military we have

seen have been in the Decision Support System niche. Ontologies supporting operations,

logistics and intelligence can be greatly enhanced with implementations of effective

ontologies designed to help speed a decision maker’s net decision rate.

d. Modeling and Simulation
An important application area for ontologies is within the domain of

Modeling and Simulation (M&S). Within M&S, an enormous amount of effort and

resources are focused on development of the scenario or modeling environment. This

task traditionally is painstakingly crafted for each scenario from a centralized location. A

tremendous amount of domain expertise is poured into each scenario that are often times

used and discarded due to the complex and time consuming nature of scenario

modification. With the application of ontologies scenarios can now be pulled together

from remote locations, data can be imported and the scenarios themselves can take

advantage of the modular aspect of ontologies and modified with relative ease saving

time and money.

Now that we have an idea of the potential employment areas for an

ontology, let us look at Information Flow Framework (IFF) Foundational Ontology83 and

our abstracted derivative as a technique to provide a general classification to ontologies

as a means to discover their general purpose.

Each of the IFF levels is designed to accomplish specific functions.

Figure 45 shows the IFF Foundational Ontology Framework on the left, and an abstracted

version derived from the IFF Foundational Ontology on the right. We will use the

version on the right from which to establish our common Ontology Classification

Framework to assist the military user and developer community in the formal

classification of an ontology.

83 IFF is the IEEE building block approach toward the development of an object level ontological

structure [http://suo.ieee.org/IFF/version/20021205.htm].

166

e. IFF
At the most general level of classification the IFF asserts an ontology will

either belong to the Meta Level or the Object Level. The Meta Level contains ontologies

about ontologies (http://suo.ieee.org/IFF, 2002). One can liken this level to metadata in a

database. It serves to describe the data, in effect it is data about data. In contrast the

Object Level is where the domain content is described (http://suo.ieee.org/IFF, 2002).

Domain content can range from general to specific depending on the ontology’s purpose.

Figure 45 depicts a further decomposition of the Meta and Object Level Ontology

categories as suggested by the IFF.

Within the Metalevel, ontologies are further decomposed by

specialization. There is a Top Level supplying the general terms and relations. The Top

Level is the most general category of ontologies. The next level, the Upper Level,

provides the category theory, general classifications and concept analysis. Finally, the

Lower Level provides the model theory and interfaces with the Object Level

(http://suo.ieee.org/IFF, 2002). These stratifications provide useful generic applicability

to gain insight about the contents and purpose of an ontology by its classification into one

of these categories.

The Object Level can also be further decomposed as Figure 45 depicts.

The decompositions to the categories of Generic, Middle and Specialized are an attempt

to further classify ontologies within the Object Level by their degree of specialization.

As one might assume by their names a Generic Ontology in the Object Level

Classification would provide generic domain content, or content that could apply to a

large number of applications across a domain. Following this logic an ontology classified

as Specialized within the Object Level could be expected to provide very specific domain

content to certain specialized segments of a domain. The Middle Level would contain

ontologies not considered specialized, but specialized enough not to be considered

generic. It is within this general classification framework we hope to assist users and

developers in the military domain by associating function or purpose with a given

ontology by its general classification category.

167

Metalevel

Object level

Upper

Lower

Top

Information Flow Framework

Category Theory Ontology
namespaces: categories, functors, natural
transformations, adjunctions, colimits and limits, Kan
extensions, monads, topoi

Upper Core Ontology
namespaces: classes, functions;
(binary) relations
and endorelations; graphs
and graph morphisms; etc.

Upper Classification Ontology
namespaces: orders, monotonic functions,
order bimodules, adjoint pairs, Galois connections,
concept lattices, concept morphisms, complete lattices,
complete adjoints, complete homomorphisms, classifications,
etc. functional/relational infomorphisms, bonds, bonding pairs

Top Core Ontology
(one namespace) collections, functions,
(binary) relations, limits and colimits

Model Theory Ontology

namespaces: sets, functions, (binary) relations,
classifications, spans and hypergraphs, models,
1st-order interpretations, etc.

Ontology Ontology

namespaces: type languages and their morphisms,
expressions, theories and their morphisms, models and
model infomorphisms, prologics, logics and logic
infomorphisms, truth, etc.

Upper Ontology1

Upper Ontology2

Upper Ontologym
ֻ

Domain Ontology1

Domain Ontology2

Domain Ontologyp
ֻ

Middle Ontology1

Middle Ontology2

Middle Ontologyn
ֻ

Metalevel

Object level

Upper

Lower

Top

Information Flow Framework

Category Theory Ontology
namespaces: categories, functors, natural
transformations, adjunctions, colimits and limits, Kan
extensions, monads, topoi

Upper Core Ontology
namespaces: classes, functions;
(binary) relations
and endorelations; graphs
and graph morphisms; etc.

Upper Classification Ontology
namespaces: orders, monotonic functions,
order bimodules, adjoint pairs, Galois connections,
concept lattices, concept morphisms, complete lattices,
complete adjoints, complete homomorphisms, classifications,
etc. functional/relational infomorphisms, bonds, bonding pairs

Top Core Ontology
(one namespace) collections, functions,
(binary) relations, limits and colimits

Model Theory Ontology

namespaces: sets, functions, (binary) relations,
classifications, spans and hypergraphs, models,
1st-order interpretations, etc.

Ontology Ontology

namespaces: type languages and their morphisms,
expressions, theories and their morphisms, models and
model infomorphisms, prologics, logics and logic
infomorphisms, truth, etc.

Upper Ontology1

Upper Ontology2

Upper Ontologym
ֻ

Domain Ontology1

Domain Ontology2

Domain Ontologyp
ֻ

Middle Ontology1

Middle Ontology2

Middle Ontologyn
ֻ

Metalevel

Object level

Upper

Lower

Top

Metalevel

Object level

Upper

Lower

Top

Information Flow Framework

Category Theory Ontology
namespaces: categories, functors, natural
transformations, adjunctions, colimits and limits, Kan
extensions, monads, topoi

Upper Core Ontology
namespaces: classes, functions;
(binary) relations
and endorelations; graphs
and graph morphisms; etc.

Upper Classification Ontology
namespaces: orders, monotonic functions,
order bimodules, adjoint pairs, Galois connections,
concept lattices, concept morphisms, complete lattices,
complete adjoints, complete homomorphisms, classifications,
etc. functional/relational infomorphisms, bonds, bonding pairs

Top Core Ontology
(one namespace) collections, functions,
(binary) relations, limits and colimits

Model Theory Ontology

namespaces: sets, functions, (binary) relations,
classifications, spans and hypergraphs, models,
1st-order interpretations, etc.

Ontology Ontology

namespaces: type languages and their morphisms,
expressions, theories and their morphisms, models and
model infomorphisms, prologics, logics and logic
infomorphisms, truth, etc.

Upper Ontology1

Upper Ontology2

Upper Ontologym
ֻ

Domain Ontology1

Domain Ontology2

Domain Ontologyp
ֻ

Middle Ontology1

Middle Ontology2

Middle Ontologyn
ֻ

Information Flow Framework

Category Theory Ontology
namespaces: categories, functors, natural
transformations, adjunctions, colimits and limits, Kan
extensions, monads, topoi

Upper Core Ontology
namespaces: classes, functions;
(binary) relations
and endorelations; graphs
and graph morphisms; etc.

Upper Classification Ontology
namespaces: orders, monotonic functions,
order bimodules, adjoint pairs, Galois connections,
concept lattices, concept morphisms, complete lattices,
complete adjoints, complete homomorphisms, classifications,
etc. functional/relational infomorphisms, bonds, bonding pairs

Top Core Ontology
(one namespace) collections, functions,
(binary) relations, limits and colimits

Model Theory Ontology

namespaces: sets, functions, (binary) relations,
classifications, spans and hypergraphs, models,
1st-order interpretations, etc.

Ontology Ontology

namespaces: type languages and their morphisms,
expressions, theories and their morphisms, models and
model infomorphisms, prologics, logics and logic
infomorphisms, truth, etc.

Upper Ontology1

Upper Ontology2

Upper Ontologym
ֻ

Domain Ontology1

Domain Ontology2

Domain Ontologyp
ֻ

Middle Ontology1

Middle Ontology2

Middle Ontologyn
ֻ

Category Theory Ontology
namespaces: categories, functors, natural
transformations, adjunctions, colimits and limits, Kan
extensions, monads, topoi

Upper Core Ontology
namespaces: classes, functions;
(binary) relations
and endorelations; graphs
and graph morphisms; etc.

Upper Classification Ontology
namespaces: orders, monotonic functions,
order bimodules, adjoint pairs, Galois connections,
concept lattices, concept morphisms, complete lattices,
complete adjoints, complete homomorphisms, classifications,
etc. functional/relational infomorphisms, bonds, bonding pairs

Top Core Ontology
(one namespace) collections, functions,
(binary) relations, limits and colimits

Model Theory Ontology

namespaces: sets, functions, (binary) relations,
classifications, spans and hypergraphs, models,
1st-order interpretations, etc.

Ontology Ontology

namespaces: type languages and their morphisms,
expressions, theories and their morphisms, models and
model infomorphisms, prologics, logics and logic
infomorphisms, truth, etc.

Category Theory Ontology
namespaces: categories, functors, natural
transformations, adjunctions, colimits and limits, Kan
extensions, monads, topoi

Upper Core Ontology
namespaces: classes, functions;
(binary) relations
and endorelations; graphs
and graph morphisms; etc.

Upper Classification Ontology
namespaces: orders, monotonic functions,
order bimodules, adjoint pairs, Galois connections,
concept lattices, concept morphisms, complete lattices,
complete adjoints, complete homomorphisms, classifications,
etc. functional/relational infomorphisms, bonds, bonding pairs

Top Core Ontology
(one namespace) collections, functions,
(binary) relations, limits and colimits

Model Theory Ontology

namespaces: sets, functions, (binary) relations,
classifications, spans and hypergraphs, models,
1st-order interpretations, etc.

Ontology Ontology

namespaces: type languages and their morphisms,
expressions, theories and their morphisms, models and
model infomorphisms, prologics, logics and logic
infomorphisms, truth, etc.

Category Theory Ontology
namespaces: categories, functors, natural
transformations, adjunctions, colimits and limits, Kan
extensions, monads, topoi

Upper Core Ontology
namespaces: classes, functions;
(binary) relations
and endorelations; graphs
and graph morphisms; etc.

Upper Classification Ontology
namespaces: orders, monotonic functions,
order bimodules, adjoint pairs, Galois connections,
concept lattices, concept morphisms, complete lattices,
complete adjoints, complete homomorphisms, classifications,
etc. functional/relational infomorphisms, bonds, bonding pairs

Upper Core Ontology
namespaces: classes, functions;
(binary) relations
and endorelations; graphs
and graph morphisms; etc.

Upper Classification Ontology
namespaces: orders, monotonic functions,
order bimodules, adjoint pairs, Galois connections,
concept lattices, concept morphisms, complete lattices,
complete adjoints, complete homomorphisms, classifications,
etc. functional/relational infomorphisms, bonds, bonding pairs

Top Core Ontology
(one namespace) collections, functions,
(binary) relations, limits and colimits

Model Theory Ontology

namespaces: sets, functions, (binary) relations,
classifications, spans and hypergraphs, models,
1st-order interpretations, etc.

Ontology Ontology

namespaces: type languages and their morphisms,
expressions, theories and their morphisms, models and
model infomorphisms, prologics, logics and logic
infomorphisms, truth, etc.

Model Theory Ontology

namespaces: sets, functions, (binary) relations,
classifications, spans and hypergraphs, models,
1st-order interpretations, etc.

Ontology Ontology

namespaces: type languages and their morphisms,
expressions, theories and their morphisms, models and
model infomorphisms, prologics, logics and logic
infomorphisms, truth, etc.

Upper Ontology1

Upper Ontology2

Upper Ontologym
ֻ

Domain Ontology1

Domain Ontology2

Domain Ontologyp
ֻ

Middle Ontology1

Middle Ontology2

Middle Ontologyn
ֻ

Upper Ontology1

Upper Ontology2

Upper Ontologym
ֻ

Upper Ontology1Upper Ontology1

Upper Ontology2Upper Ontology2

Upper OntologymUpper Ontologym
ֻ

Domain Ontology1

Domain Ontology2

Domain Ontologyp
ֻ

Domain Ontology1Domain Ontology1

Domain Ontology2Domain Ontology2

Domain OntologypDomain Ontologyp
ֻ

Middle Ontology1

Middle Ontology2

Middle Ontologyn
ֻ

Middle Ontology1Middle Ontology1

Middle Ontology2Middle Ontology2

Middle OntologynMiddle Ontologyn
ֻ

Figure 45. IFF Foundation Ontology and Derived General Ontology Classification

Framework (After: (http://suo.ieee.org/IFF).

It is important to note there are many different methodologies proposed to

classify ontologies, but no single standard has emerged84. We expect as the SWEB

technologies continue to develop a standard classification framework will be necessary to

differentiate and classify the different types of ontologies accessible on the SWEB. By

implementing a general classification framework a potential adopter, whether it be an

agent, service or human, would be able to readily identify the ontology’s meeting the

application’s general requirement facilitating more effective discovery and higher

potential reuse of existing ontologies. Reuse is an important design principle of the

SWEB, as reuse will establish the connectedness required to achieve large scale common

interpretation.

The general classification category for our example is “Meta Level Lower

Ontology” and it could be inserted into ontology header in the Dublin Core Description85

tag in the current OWL ontology constructs as we have done below. An annotated

classification such as this would let potential users know the granularity level of the

84 Jasper and Uschold have also developed a framework to classify ontology applications. They

differentiated ontologies based on the application versus the function. We chose to discuss the functional
view of classification in attempt to keep the application and the ontology as loosely coupled as possible.
We expect this to be an area of continued research. We chose IEEE IFF Foundational Ontology as a basis
for our classification framework due to its IEEE sponsorship and potential widespread adoption.

85 Dublin Core is an online, interoperable meta data standard and specialized meta data vocabulary for
describing resources that enable more intelligent information discovery systems (www.dublincore.org).

Top Level

Upper Level

Lower Level

Object Level
(Generic)

Object Level
(Middle)

 IEEE Information Flow
Framework Used as

Guideline Methodology

Object Level
(Specialized)

Metalevel

Object
Level

(Domain Content)

General

Specific

General Terms
and Relations

Category Theory,
Concept Analysis

Model Theory,
Interface with
Object level

(Ontologies about
Ontologies)

168

concepts and general content of the ontology without close inspection of the ontology86.

If our general classification framework was adopted within our enterprise all who

interpreted the dc:description tag would know the ontology’s general classification and

infer its intended purpose. Figure 46 illustrates general classification category in the

Dublin Core tag set of our example ontology.

Mechanism to provide the developer’s
intended general classification of the

ontology

Figure 46. General Classification in the Dublin Core Tag Set.

3. Evaluating a Specific Purpose with Competency Questions
In the last section we discussed potential uses of ontologies in the Military

Domain and of the development of a standardized General Classification Framework.

We are now ready to discuss the relationships between the specific purpose of an

ontology and its competency questions. But before we continue, let us put the topics we

discussed in the previous section to the test by employing them against the ontology we

will be using as the subject of this section’s discussion.

For the purposes of this discussion we will introduce an ontology developed to

coordinate interoperability between an external data source and an internal knowledge

base. We chose to solve this problem by describing the external data source’s data

model, content, and methods in a manner enabling both humans and agents to interact

with the external source. The subject of our focus was the Generic Hub 5 NATO Data

Exchange Database referred to as Generic Hub 5 (GH5). GH5 is designed to assist the

nations of NATO exchange militarily significant data and establish common meaning for

terms. Let us examine Figure 47, the Domain Concept Tree for the GH5 ontology. The

ontology we developed conceptualizes the meta data aspect of the GH5

86 Assuming the classification was done correctly in accordance with some standard and that it was

done without the intention to deceive.

169

system and exposes it in the form of an ontology for agents/systems to gain an

understanding regarding the data model, content, methods and articulation mechanisms.

Our ontology serves as an interoperability entry point for GH5.

Figure 47. Specific Purpose Example.

As we stated above, we will apply the General Classification Framework we

derived to our example ontology. We have already revealed the solution, but we can still

add to the understanding of the idea behind general classification by applying the

classification framework to our example ontology.

First, analyze the name of the ontology. As with the OO design methodology one

can draw many inferences about an ontology’s purpose from its name. This ontology is

named Battlespace Generic Hub Meta Ontology. If the designer of this ontology used

some general naming conventions we can derive enough information from the name to

assist us in our classification effort. Defining naming conventions for ontologies and

concepts within ontologies and strictly adhering to them helps make an ontology

relatively easy to classify (Noy, 2001, 21). The “Meta” in our example’s name prompts

170

us to make a possible association with the Meta Level of the classification framework.

We know according to the framework that Meta Level ontologies are ontologies about

other ontologies. This is the first concrete criterion for associating an ontology at Meta

Level of our general classification framework. Our example ontology thus far, looks to

be a potential member of this Meta Level category.

From Figure 46, we see our ontology imports two other ontologies. According to

their names, one of them is a conceptualization of a data model and the other is an

articulation ontology. Since the BGH5 Meta Ontology contains at least some information

about two other ontologies (location and some degree of content) we can safely assert our

example ontology belongs to the Meta Level category.

Determining the sublevel is slightly trickier and requires close analysis of the

ontology’s content and structure. For our example ontology we get the impression from

the number of ontologies it imports and the type of details it contains that it is likely

candidate for an interface with Object Level. We can arrive at this almost entirely by the

process of elimination. We can ascertain this ontology is more specific than we would

expect a Top or Upper Level ontology to be. We would expect more general concepts

lacking specificity. The class structure within our ontology has details that seem to relate

to other more detailed concepts likely residing within the Object Level. Just as a

refresher, the Object Level contains the domain specific knowledge. Because of this we

can assert it is a candidate for membership in the Lower Category of the Meta Level.

While this classification was rough shot, it was intended to demonstrate by the name,

structure and granularity of the content alone one can generally classify an ontology

within the simple framework we established relatively quickly and without in depth

analysis. It is our strong position a general classification should require little analysis and

be done quickly.

To demonstrate the role of competency questions in evaluating an ontology for

adherence to a specific purpose lets examine the competency questions associated with

our GH5 Meta Data Ontology:

171

• How is the data stored in the GH5 relational database?

• What stored procedures or queries are available for use?

• What is the structure of the query outputs?

As we can see from the competency questions above all are related to our

overarching purpose of interoperability with the GH5 database. Specifically, how were

the data elements stored, how can I access them (queries) and what is the structure of the

output of the query. Providing the ontology delivered this information, we could achieve

the interoperability we required with data source. To reinforce this point we will

examine one of the competency questions in detail to demonstrate how the ontology

provided the information we required.

4. Competency Question Analysis: How Is the Data Stored in the GH5

Relational Database?
Interoperability between the data source and the knowledge base was the

overarching goal. To achieve a level of interoperability we established a data model class

in our Meta Ontology with two subclasses, data model enumeration and data model

conceptualization. The data model enumeration decomposed to a series of subclasses

representing the atomic elements of a relational data model and their relationships (See

Figure 48). From the data model enumeration class a human or an agent could

reasonably determine what the Entities and Attributes where for the model, and

determine the highly specialized Attributes serving as Primary and Foreign Keys. This

portion of the ontology provided a listing and function of the data model’s elements, but

it failed to describe the specific relations between a given entity and its attributes

including which of its attributes were the Primary or Foreign keys.

172

Figure 48. Data Model Enumeration Subclass.

To expose the specific relations of each entity we developed another ontology

conceptualizing the data model itself (See Figure 49). The Data model Conceptualization

Ontology replicated the role of the Entity Relationship (ER) Model87 and added

additional expressiveness. The Data model Enumeration Ontology used in conjunction

with the Data model Conceptualization Ontology adequately assisted in providing more

complete answers to our competency questions we established above. The more

completely we are able to answer our competency questions the more effective the

ontology.

87 The future of the Semantic Web may allow the ability to “inject” meaning into objects like ER

diagrams without creating an additional ontology. Related, there are several studies ongoing with
semantically enabling the Unified Modeling Language (UML) which would also obviate the requirement
for an additional ontology.

"^ ™L °"''

173

Same_Class_as

Imported by the
BGH5_Meta_Ontology

Specific
Relationships

Between
Entities of
Datamodel

Imports

**D
oes not sh

ow

complete h
ierarch

y

Figure 49. Data Model Conceptualization Domain Concept Tree.

5. Extendibility/Reuse
Designing for extendibility and reuse are critical concepts to the realization of the

SWEB. In order for the SWEB to reach its full potential and attain the lofty title of “web

of meaning or web of semantics,” the multitude of separate ontologies must be linked and

related to each other ([2] Klein, 1) and used in combination with other ontologies (Kim,

2002, 2). It is postulated that numerous, locally consistent, but globally heterogeneous

ontologies will exist with no central ontology aware of these local ontologies (Kim, 2002,

3). But, each of the local ontologies will be aware of their neighbors and a few will have

links to more distant ontologies weaving together small interconnected worlds. Multiple

copies of ontologies can exist to mitigate the effects of network outages and

malfunctioning URLs. The concept of a local cache discussed in the Network Data

Sources Chapter not only applies to data sources, but to knowledge sources as well. An

ontology serving a critical function in an application must be mirrored locally to ensure

174

access and functionality when the network is unavailable. To ensure the full power of

ontologies are realized ontology designers must make maximum use of existing

ontologies on the network by either extending or reusing them. Both options can help

achieve the small world effect in slightly different ways. Let us first examine the idea of

reuse.

Ontology reuse implies the utilization of a preexisting ontology without

modification to its original state or location. Reuse is fundamentally dependent on shared

conceptual foundations for the domain of discourse it describes (Gruber, 1993, 3). To

simplify, the ontology being considered for reuse must describe objects of the world in a

way the implementing application can commit to. If agreement cannot be reached the

designer continues to search for a different ontology to reuse in line with the application’s

conceptual requirements or design a new one. Reusing existing ontologies may be a

requirement in order to interact with other applications that may already be committed to

other ontologies or controlled vocabularies (Noy, 2001, 6). Designing a new one

independent of existing ontologies does little to further the goal of the “web of

semantics” unless other ontologies link to it after it is deployed. Critical to the “web of

meaning” is this idea of reuse.

Ontology extendibility implies the specialization of an existing ontology (Gruber,

1993, 3) for use in a different domain or problem space than what it was originally

designed. As implied by specialization, the ontology being extended is usually more

general than the target application requires. Ontologies are extended by simply adding

additional constraints or relationships on the existing ontology. The result is a reuse of

concepts.

A central idea to the reusability and extendibility of ontologies is the ability of the

designer to anticipate additional usages for the vocabulary and concepts that will be

contained within the ontology. An ontology designer has little influence on the concepts

introduced by the ontology, as they will usually be driven by the requirements of the

application, but there is considerably more influence regarding the vocabulary. Gruber

states “One should be able to define new terms for special uses based on the existing

vocabulary, in ways that do not require revisions of the existing definitions (Gruber,

175

1993, 3).” In other words controlled vocabularies should be used whenever possible and

specialized as required to meet the needs of the application. With this in mind let us

examine controlled vocabularies

The concept of controlled vocabularies is an important discussion point to

designing ontologies and establishing the SWEB. The adherence to a controlled

vocabulary can be informal or formal. Informal adherence occurs naturally and persists

because the members of a domain wish to communicate. When members introduce new

terms into a domain the terms are either accepted by the domain or rejected. Ultimately

individuals become attuned to each other’s terms and concepts, otherwise

communications break down (Gardenfors, 2000, 155). The military has many

occurrences of informal adherence to vocabulary within its ranks. If one were to examine

various groups within the military one would immediately notice the presence of an

informal controlled vocabulary. This informal vocabulary is the mechanism its members

use to communicate within their group. No policy or authority directs the members to

communicate using this language, it is not captured in any book, and it just emerges

predictably across the group.

Formal adherence to a controlled vocabulary is directed by doctrine, policy, or

specification. Both allow for common exchange of terms amongst committed parties, but

formal adherence guarantees members of domain are committed to the vocabulary.

According to McGuinness, “As ontologies become more common within applications

and those applications become larger and longer lived, it is becoming increasingly

common for ontologies to be developed in distributed environments by authors with

disparate backgrounds (McGuinness, 2000, 1). A formally controlled language will assist

in grounding the concepts with common definitions and terms especially in distributed

environments. Davenport and Prusak summed this problem up by stating, “People cannot

share knowledge if they do not speak the same language” (Davenport, 1998, 98).

Within the military, and the Army specifically, all operations and actions

conducted are based on doctrine found in a training or field manual. As we mentioned

above there is argument about how closely doctrine is followed in practice, but the terms

and concepts found within the doctrine are widely adopted across the service. This could

176

be the grounding required for formal adherence, although at this point nothing directs

members of a domain to communicate in doctrinal terms; it very much happens

informally. Even so, a small number of terms and concepts in wide use could become the

foundation of a controlled vocabulary based on those doctrinal terms and concepts. To

press forward with this idea to establish a controlled vocabulary the doctrine writers

would become the custodian and authority of the terms. To use a term, the namespace or

Published Subject Indicator (PSI)88 (Vatant, 2003, 74), an artifact from the XML Topic

Map (XTM) community, could be included as a reference namespace grounding the term

within the conceptual foundation of the originating doctrine. PSIs within topic maps are

actual binding points for subject identity (Vatan, 2003, 74) and they could be used

similarly within an ontology. Once the term is grounded the meaning cannot be changed

unless done so by the doctrine writers. This guarantees conceptual grounding, a common

vocabulary likely to enjoy higher instances of extendibility and reuse among its published

ontologies.

For a practical example of implementing an ontology with formal adherence to a

controlled vocabulary, we can refer to the GH5 Data Model Conceptualization Ontology.

GH5’s Controlled vocabulary was used exclusively in the design of this ontology. The

GH5 Specification enumerates in exhaustive detail the definition, pedigree and allowable

physical values for each term. Figure 50 below, depicts the Generic Hub 5s controlled

vocabulary specification for a single attribute in the data model. We can conclude from

Figure 50, if this vocabulary is a representative sample, controlled vocabularies can be

extensive and should be used whenever possible to ensure common definitions of terms.

The biggest benefit however, is someone else did the work.

88 The idea of PSI is not unique to the XTM community. Within the Unified Medical Language

System (UMLS) they apply this grounding to not only terms but concepts. They use a Concept Unique
Identifier (CUI). The CUI underlying concept is based on Ogden and Richards meaning triangle we
introduced in the Knowledge Chapter.

177

Domain Name object-item-category-code
Definition The specific value that represents the class of OBJECT-ITEM.
Definition Source ATCCIS

DOMAIN VALUES
Value Definition

Source

Value

FACILITY An OBJECT-ITEM that is built, installed or established to serve some
particular purpose and is identified by the service it provides rather
than by its content.

Adapted from US
Joint Pub 1-02

FA

FEATURE An OBJECT-ITEM that encompasses meteorological, geographic,
and control features of military significance.

ATCCIS FE

MATERIEL An OBJECT-ITEM that is equipment, apparatus or supplies of military
interest without distinction as to its application for administrative or
combat purposes.

Adapted from US
Joint Pub 1-02

MA

ORGANISATION An OBJECT-ITEM that is an administrative or functional structure. Adapted from US
Joint Pub 1-02

OR

PERSON An OBJECT-ITEM that is a human being to whom military
significance is attached.

Adapted from US
Joint Pub 1-02

PE

OWL Markup
demonstrating use of
controlled vocabulary

Figure 50. Generic Hub 5 Controlled Vocabulary and OWL Markup Example.

6. Ontology Design Methodology Highlights
Thus far we have discussed purpose, scope, reuse and extendibility. We have

belabored the use of restricted vocabularies whenever possible, gaining commitment and

imposing minimal detail to achieve the ontology with the weakest theory and most

meaning. Now we need a methodology to capture these heuristics to ensure we avoid the

design pitfalls we discussed above. An appropriate design methodology offers us a

useful mechanism to accomplish this. Our research lead us to many different

methodologies. Many were a few paragraphs outlining simply “how to build” an

ontology. Others were lengthy and detail focused. For our purposes we focused on the

best aspects of the methodologies we researched to assist a military user to evaluate

various methodologies for implementation. We chose to highlight points specific enough

178

to help an adopter seeking a methodology find the appropriate one. Each of our

highlights will be traced to their parent methodology and end with a value added analysis.

Where applicable we applied other design principles from earlier discussion topics to

reinforce important points.

a. Feasibility Assessment (FA)
Most of the methodologies we reviewed assume a feasible application area

has been determined and the conditions are right for implementation of an ontology.

Only one of the methodologies we researched specifically mentioned a requirements

specification. Explicit generation of initial requirements is what the FA accomplishes

and is why the FA must be included. In fact only the On-To-Knowledge Methodology

(OTK) (Sure, 2003, 34), adapted from CommonKADs89, included an FA. We view the

FA as serving a necessary requirements analysis function early in the development

process to drive design. Additionally, the value of establishing a baseline, structured

approach early in ontology development will improve chances of a attaining a

requirements based final design. The FA serves as a pre-domain study focusing on

quickly identifying facts, assumptions, goals, constraints, and establishing initial

requirements. This phase is not intended to be exhaustive in its conclusions, but to

provide a start point to the formal design phase. The following checklist includes key

concept areas the FA should focus are:

• Analysis of the preliminary usage scenario/application

• Establish initial requirements

• Estimate who users will be

• Estimate of domain

• Estimate of scope

• Identify requirements for domain experts

• Recommendations for Controlled Vocabularies

• Identify existing ontologies in the same or related problem space

• Preliminary choice of language

89 CommonKADS is a methodology to support structured knowledge engineering using clear links to

OO development techniques compatible with UML (www.commonkads.uva.nl/frameset-
commonlads.html)

179

• Preliminary selection of automated tools

• Identify ontology development team

In addition, the following pre-design competency questions (Obrst, 2003,

127) are helpful to consider:

• What is the ontology intended to be about (in general)?

• How will the ontology be used? (preliminary estimate)

• What do you want to state in the ontology (preliminary estimate)?

• What modifications will be required over time?

Armed with estimates, if not answers to these questions, enough

information is available to form a decision as to whether ontology development is

feasible and should continue. The FA is iterative and can be executed as many times as

necessary and be as thorough as time allows. The OTK and CommonKADS Ontology

methodologies both include the FA in their methodology.

b. Enumeration of Terms, Concepts and Relationships
An organized brainstorming process to capture meaningful concepts,

terms, relationships right down to the subjects, verbs, objects and adjectives is critical in

capturing the objects of a domain (Obrst, 2003, 127). Most advocate capturing a list of

terms we would like to make statements about or explain to users (Noy, 2001, 6) (Obrst,

2003, 127). Others advocate describing the concepts and then associating terms (Sure,

2003, 43). No matter how this is accomplished the end state must be a list of terms,

concepts and how they relate evaluated against the scope and purpose. OTK advocates

focusing on the most important concepts and then through generalization or specification

identify the remainder of the concepts (Sure, 2003, 43). This technique is called a

Middle-Out approach. The same technique to discover potential concepts can be done as

effectively from the Bottom-Up or Top-Down. As long as the concepts are captured

along with their definitions and potential usage of controlled vocabularies are considered

how this step is done is arbitrary.

c. Form the Class Hierarchy
When the concepts and terms are enumerated next we must relate the

entities in our universe of discourse by developing the class hierarchy. McGuinness and

180

Noy state there is no single correct hierarchy for a given domain (Noy, 2001, 12).

However, the class hierarchy is what makes inheritance and subsumption possible within

an ontology. The inheritance enabled by the hierarchy within the ontology is responsible

for inference engines being able to reason over a hierarchy with predictable results. One

such inference operation dependent on the hierarchy is the operation of classification.

Classification amounts to using the hierarchy to place a new concept in the appropriate

place in the hierarchy and checking subsumption between each defined concept and the

new concept to ensure the placement is valid (Nardi, 2003, 14). Without a correct

hierarchy this operation would likely achieve unpredictable or unsatisfiable results. To

avoid this problem, the class hierarchy must be planned carefully and checked to ensure

the logic is correct. Yes, it is true there is not one right hierarchy for a given domain or

ontology, but the hierarchy can be logically wrong. The class hierarchy must be driven

by the requirements of the application and care should be taken to ensure it is logically

correct.

To ensure the hierarchy is correct, check the subordinate class to see if it is

related to the more general class by an “is-a” relation (Noy, 2001, 12) (See Figure 51).

For instance, if the class Point Control Measure is the most general class, then all of its

children, the members of the more specialized classes, should be a “kind of” Point

Control Measure. If we say Way Point is one of those specialized classes then we should

be able to put it to the “is a” test. The ‘is a” test reads, “A Way Point is a Point Control

Measure.” If this is correct then the hierarchy is also correct.

Point_Control_
Measure

SubclassOf

Start_
PointEnd_

Point
Way
Point

Check
Point

“Is-a”“Is-a”“Is-a”“Is-a”

Figure 51. “Is –a” Test.

181

To further assist with ensuring the correctness of a hierarchy a designer

can use visualization techniques. Domain Concept Trees, such as the ones we have used

throughout this work to better visualize the example ontologies are an effective and

simple tool to both graphically depict the ontology, as well as expose the hierarchy.

Additional uses of Domain Concept Trees include relating classes with properties,

spotting inconsistencies within an ontology, and as an effective pseudo code replacement

while marking up an ontology into its computational model (Fernandez, 8). Besides

Domain Concept Trees there is also a more specialized version of the same technique

called Attribute Classification Tree. The Attribute Classification Tree is used to

graphically depict attributes and their inference output.

7. Design Patterns
A pattern is defined as an idea that has been useful in one practical context and

will probably be useful in others (Fowler, 1997, 8). Patterns provide a starting point from

which to leverage practical usage of a concept and apply it to a new one. While

undoubtedly there are many useful patterns that exist in the ontology design world, two

especially useful patterns emerged during our research are worthy of discussion. The

first is the concept of an articulation ontology, and the second is the concept of a highly

specialized, multi-disciplined ontology called a knowledge module. Both patterns will be

described in detail.

a. Articulation Ontology
As we stated above, for ontologies to have the maximum impact and reach

their full potential they must be widely shared and reused ([2] Klein, 1) (Kim, 2002, 2)

(Smith et al, 2003, 24). Sharing and reusing ontologies is done by merging, combining or

articulating between terms and concepts in a given ontology, to terms and concepts in

another. This process is unfortunately not as simple and arbitrary as mapping from one

ontology to another90. The underlying semantics and relationships associated with the

90 1 to 1 mapping can work if the conditions are right.

182

ontology must also be mapped to preserve the underlying computational model. To

accomplish this, an articulation91 must occur on multiple levels (Klein, 2). Let us

examine some of the details and patterns involving this concept.

The OWL Language Guide asserts, “Much of the effort of developing an

ontology is devoted to hooking together classes and properties in ways that maximize

implications92 (Smith, 2003, 24). The goal of OWL is to create the environment where

simple assertions about class membership have broad and useful implications for the

SWEB (Smith, 2003, 24). These “broad and useful” implications translate to almost

automatic reuse and integration potential between ontologies and applications on the

SWEB. The OWL language construct allows a user the ability to easily import external

ontologies into the current ontology, but currently provides no mechanisms to deconflict

the potential consequences of the import. McGuinness states, “Merging small ontologies

may not be difficult to do manually, but once the ontologies become large, it becomes

more critical to provide systematic tool support ([2] McGuinness, 2000, 9). Today the

task of combining, merging and articulating between ontologies is largely a manual

endeavor93.

To begin let us describe and examine the specific mismatches that must be

overcome to attain the goal of reuse and sharing of ontologies on the web. Mismatches

between ontologies can occur at two levels, the language/syntax level or the

ontology/model level (Klein, 2).

(1) Language Mismatch. Language level mismatches occur

when ontologies are written in different language constructs (Klein, 2). These

mismatches are often the easiest to detect and can be remedied by rewriting the concept

from one ontology into the desired markup language. This type of mismatch however

can often suggest there are deeper mismatches within the model as different knowledge

representation languages often express logical constructs differently. This type of

91 Articulation or Translation is defined as changing the representation of the formalism of an
ontology while preserving the semantics (Klein, 2).

92 Implication is defined as a logical relation between classes and/or propositions.
93 There are a few automated/semi automated applications capable of assisting with these tasks:

ECIMF Semantic Translation Tool, Chimaera, Buster, OntoMerge, SHOE.***List is not exhaustive.

183

language level mismatch will likely be mitigated by the adoption of OWL as the W3C

Ontology Language Recommendation. We will likely see, as has been the case with

DAML, users of legacy languages migrating to OWL out of interoperability necessity.

This natural attuning of the language constructs should provide the required focus for tool

makers to design tools with a better chance of widespread adoption to put the onus of

mismatch detection on the software tool. Other types of mismatches will not be

alleviated by the adoption of OWL and are found at the ontology or model level

(2) Model Mismatch. A mismatch at the model level can occur

when two ontologies model objects by imposing varying levels of detail (Klein, 3). We

will call this mismatch one of physical granularity as it relates to the description of the

physical characteristics of the object being modeled. Before merging or combining

ontologies the level of physical granularity must be examined to ensure a match.

An example of a physical granularity mismatch can be

demonstrated with the example ontologies shown in Figure 52 regarding Antiaircraft

Radars. Both ontologies are addressing the characteristics of the systems radar range, but

one uses specific integer values and other uses a relative English description. Attempting

to map the value of 8200 from one ontology to Medium Range in the other ontology

would not give us the desired results. To set up this example we must make the assertion

Medium Range is between 5000-10000 meters and that our value of 8200 is within the

Medium Range category. With that said, the problems associated with this mapping

would now treat 8200 as a Radar Range Classification in one ontology and a non-

negative integer associated with the has_RangeValue data type property in the other. The

has_RangeValue data type property also carries with it restrictions on its domain and

range not preserved in the mapping. As is evident, this direct mapping will create a

conflict within the ontology and deliver undesirable results.

184

Antiaircraft_
Capabilities_

Descriptor

Anon:Radar_
Range_

Capability

subClassOfsubClassOf

#Radar_
Search_

Range_Value

#Radar_
Track_

Range_Value

Xsd:nonnegative
Integer

Xsd:nonnegative
Integer

has range_Value

5100

Antiaircraft_
System_

Descriptor

Mobility_Classification

subClassOf
subClassOf subClassOf

oneOf

Long Range
Medium Range

Short Range

Close Range
Extremely Long Range

has range_Value

8200

Radar_Range_
ClassificationArmament_Classification

P
hy

si
ca

l G
ra

nu
la

rit
y

M
is

m
at

ch

Detail GeneralOntology 1 Ontology 2

Figure 52. Physical Granularity Mismatch Example.

Granularity not only exists on the physical level, but it exists on

the conceptual level as well. If one ontology conceptualizes its objects from a physical

characteristic perspective and the other from a data model perspective, a mismatch has a

great potential to occur. This conceptual granularity mismatch can occur even if the

terms are what we would consider intuitively close in meaning. As an example let us

take two ontologies both modeling the domain of Tactical Route. Ontology 1

conceptualizes a data model storing tactical route information. Ontology 2

conceptualizes the planning and execution considerations for Tactical Routes. Even

though both ontologies are describing the same concept, they are conceptualizing Tactical

Route in totally different ways. The Data Model Ontology is defining the terms of a

Tactical Route by the function they perform in the data model, such as a primary key.

The other ontology is describing the concepts as concrete factors used to describe a

Tactical Route. The two ontologies, if merged or combined in total or linked by mapping

a few terms or concepts would likely produce undesirable mismatch errors (See Figure

53).

185

Tactical Route KMODBGH5 Datamodel

Conceptual
Granularity
Mismatch

?

?

?

? ?

?

?

?

How the data model stores data
about a Tactical Route

Tactical Route

The knowledge required to plan
and execute a Tactical RouteMismatch

Ontology 1 Ontology 2

Figure 53. Conceptual Mismatch Example.

(3) Ontology Articulation Design Pattern. The Articulation

Design Pattern, Figure 54, emerged as a result of the many problems associated with

combining and merging ontologies. The articulation ontology advocates creating a new

ontology from two or more existing ontologies and linking to the desired concepts

through the articulation surrogate (Klein, 3). The articulation essentially takes the logical

intersection between two existing ontologies and places the results in a third ontology or

the articulation. This allows the entities in the articulation to retain their original

implications and have them extended by the articulation. The articulation eliminates

through separation of concerns any mismatch that may occur by keeping the two original

ontologies apart. It is worth noting that the articulation can also function as a simple

mapping between ontologies providing no mismatches exist between the entities.

CcuAfiiU

186

Figure 54. Articulation Abstraction.

A critical mechanism enhancing the function of the articulation

ontology by providing the instance level transforms is the XSLT. While the Articulation

Ontology syntactically, logically and computationally makes assertions about the

articulated concepts, a XSLT derived from the Articulation Ontology can physically

manipulate literals, labels and other data transforms to further facilitate the articulation.

Articulation mapping done 1 to 1 at the instance level suffers a very low reuse factor and

are extremely tedious to construct if the ontology is large. Figure 55 illustrates the

tedious nature of 1 to 1 mapping at the instance level.

187

Physical
Manipulation

of the
Instance

Document

Desired
Output

Format of
Articulation

Instance
Document

Figure 55. XSLT Articulation Instance Transform.

b. Knowledge Module
The second ontology design pattern that emerged from this research was

the idea of Domain Oriented Knowledge Structuring (DOKS) within an ontology. DOKS

will be discussed at length in the Knowledge Base Chapter as a technique to modularize

knowledge into a series of autonomous knowledge bases organized similarly to how a

human would organize knowledge (Wachsmuth, 1991, 1). From an ontology design

perspective the DOKS principles are used to group relevant knowledge required for a

specific purpose and capture it in an ontology for use in a specialized domain. As a

result, the knowledge is structured in a way oriented at the very specific problem space of

a domain (Wachsmuth, 1991, 5). Knowledge Modules should be used to assist with

organizing large or highly specialized ontologies into logical categories to help speed

access and search time for the user.

^:XMLSPY M^W
. File Edit Project XML DTD/Schema Schema design XSL Authentic Convert View Browser WSDL SOAP lools Window Help

:D a;A\^ Qd 3 -^=:ni«- **.'■'% [yGrc§ 7 ^^ IQlB® 1 -W> ii =i 15
-:G,mm f !b ^ E? @*.

^■MOCTest* T'^'B imoc2daml L'nix :?XSLOutput.htmi* _ " X

i'xmHersion="1.0'enomng='LrrF-r'> A

''xml-stylesneet tyM="tMW5r hre(=-'C10ocumenls and Setli>||slH8rtyy.ty T

•'>m\ version="I f encoilin9="UTF-a"'> A

wslslyesHeetver9ion="10">imHsisl="mip:/;viiww.vii3,or(if1M9ftSi;r™iisfonii- "

■'xmlversion="tO"encoding="UTF-a"'>

■rOf BDF):mlri5='Mp://«** nps.navy.ii*NCRAI«SGAIIOperati<iiiMnr
^

DociiFiienls\'me3lsMrcngn|)ebint:2dgii«moc2dgiilnr> ^' xmlfrafo=-(iIlp*ww,w3,dr((i1999Aisfformar xmH3l.liOp=1itlp*** nps navy.mmiCfiAM/ESGM»Operations-onB%2fll.TOp- —
<II0[> imlFrard(=-|it!p:»w**,w3,or(if1992m22-rdt-synt8>i-nsr sxtsnsion-element- »mln3daml=-hlIpj;«iw*,(lamLorj200ira3Jdamko«t

<UfWs([i=-tittp';;www i«3.or?(rW9«SUFomBf-> prefwH=-rtr)(mlns:daml=-litlp:y/wv/w.damlorja00ira3/dai*i)r)imr3to="lillpJ/w*w.w3.or!((1999Aisff drmat"

<L(miri3)mclu[Ie='http'.'(wwww3or9(I999«HL'>mclu()e->-> jimMjis[l=-ht!pff**w,*3,oriiQMm[mtLScl>emair xmW5rd(=-|itlp:/;ww*,w3.drsf1999m22-rdt-syntax-nsr

t^xincluae nclutle Hre(="Sa(erMOC-xmr psr3e='tmr;>-> imlnj UIOp=-ntlp:y/vrw<v.n|is.naw rnVNCRAPVESGAftOperatniiMntt Unp-)im»i3>i5d=Titlp:;A«*'w w3 drjf2[IO[l/1[IMLScHema)(-

<ATO. Ht6Xl6n5«ir«lemef>l-prefii«'-UI0p-'> >iml-b83e=-htlpj;*ww.nps,naw.mffNCRAK/ArcHAn!)e™*0p-dntd.damr>

<-"iHe namespaces associated -vitn a DAML jocumeni anl'sr ewension element <M»Op:Name>[)ESEHT WH[l<;MilOp:Name>

(etteOiveJa^Jme.trsme 3eticl="mtEFRAH-> prerwes must de staled detore retefentsd nlM documenl Some dtttiese <MIOp:JTFCdmmander rdf parse'ype^Hespiirce"!

<M9rtnn9_()ate_tmejroiip> namespaces mar "dl De necessarY-* <HIOp:Name>"^plc(Franks""</WiOpName>

«ls»>[l1</(lay> <!-Eventually we may Have td ctiange XSLT version to 2 0 v/tien trie specifcaticn (WIOpiJTFCdmmander!

<lioui_tnie>lB</hourjme> cnpa5es-> <M(0p:H8Sidn rdtparseT"ype=1ie3durce">

<™iire_tme»0!WmnuieJme> <X3tou1piil meinod'-xnf version ■"lO- encodin5=-LITF-3" mdent^'yes-O <MiOp:Cate9Pry»"-E)tpici Ar"<fl.lilOp.Cate9dry>

<lme_:o'>e>Z<yime_zone> •MtleroBle matcH>T> <HiOp:Cdmmander>ATK<yM10p:Cdmmander>

'mm nafne>OCT</ffiontH fiame> <rdt:RDF>imin3:rd('-|it!p;/vii.KW.w3.dF}'1M9ra2a2-r(ll-syntax-nsr <M(Op:UntAssi9ned.CVMS8 VA-ISE-yiliOp.UntAssigned.

<vear>2M2</fear> xmins.dami--|itlp://www.<laiNot}QII01/II3AlarnNr <UiOp:lcap5a3eCdde>NUTZ<mj0p.icadBa3eCdde>

<fte9nnn9_dateJniejroup» »mm3,xsd'-|illp:/;www..K3,dt}QDOmO«HLScltemar <MKip: SuppprtngPackage rdf par3eType'"Sespurce">

<emln9_daleJ»tejroup. >iinln3*1itlp://www.np3.navy.rrinCRAWESGmiOpera1i:in34iitr

«lay>l)2</day> jimtMse'litlpiflwww.nps.davy.mmcRAN/ArctiAngeraiOiHinlo.daiif' <M*Op:Packageldentrtication»AN<m*Op:PackageUemifica1loii»

<HputJrfie»05</Hpur_lrfe» <!-<rol[T;iT,r.r <UiOp.UritA33igned>CVNe3 VA-ieS<;Mil0p.UritA33igried>

•mnuTe.WfoSWmnule.Kro rdfabDjt="Mtp;(v;v;,';n;5„i,,,ii,n,.:-..t,-r;h-r5eH,Map-(intddamr Thssin <HiOp M83ionNumBer>0111l<ATiOp.H83ioriNumbef>

<lme_:ane>Z<fl«ne_:Pde> pne versionof me wstatice but not in ttte ottter what isttte utity ottHs" <HKip:PnmaryM63ioriType.HT<.VKip:PnmaryMi33ionType.

-iwiiiii name^OCT^fnoim name* <Jrdf[)e3crpliort»-> <HKip.NumBerOfAfcraft>3<mKip.NumberO»ircraft»

<year>2l)l)2</rear> <1-Stan ATO F(ug9et3-> <HiOp.Arcfatt rd(.par3e-'ype--ae3durce-»

</endn9_dale_lmejrpup> <U10p:Naine> <MI0p.TypeAridUddel»A6E</l.™p.TypeAndl:Iddel»

<as_of_dale_lmejfPLip. qist:vBlue-o< selecl--AIDC/AmieMtcise_(leiitJtk:atJon''/> <milOp:Aro^ft>

<(lay>30</day> <«ep:Naffle» <MKip.ArcianCalSign»TAL0N11<fl,mp:ArcraftCalSign»

<MurJme»21</hPur.lme> ('-Commanders run <i ret ir tt'e i.i'J'; far: ccJe it in until we eflract it </MilOp^AirCornpoi>6rrt>

<f™nurejme»00<;r™niiiejme» Irom a data source-* <MiOpArCdmponentrdfpar3r;/pe--He30urce"»

<lme_2one>Z<tae_zofie> <MiOp:JTFCdmmander rdl parse'vpe-'Resdutte"* <U)Op-Packageklentiticaton>AN<;i<)Op-Packageklentit>:abon>

<mofrt\name»SEP<'JrrK)nlh_r(arW!> <Hep:ffame»'"^lM FfanU™<yMep:N«ii» <l,I*Op.UntA33igned»CVM68VAQ-138<miOp.UntAssigfwl>

<year>2(H)2</year' <HiOp.MssionNumber>0171S</l.liOpU83ionNumber>

<Ja3_ol.date.lime_groiip> <unp:UBSl(in nH:pwMType.1tes(Mifte'> <WiOp-Pnmaryl.l8SionType>EW</l.lilOpPnmaryUBSionType>

<Jeneclr/e.dayJime.lrame> <U,i|IOc Categori' liot in the I.IOC yet -> <li(iOp NumberOIArcraM-JimOp NumberOIAicraft>

oer/ics.lasked.segmenli <l,I*0pCBtegdrp'"^xpkjtAi™'JI.I*0p:Cate9dry> (MfflpArcrafl rdl parseTyBe>"Resource">

flask.jmt.arm.kicalion.segmertP <l.l«p Commanders <MBpTypeAndM o0et'EA6B<AHOpTypeAr!dM0del>

<l'a5k unit and tocalon 3;10r7ASIQJNir> oisl-vakie^il <m(OpArcrafl>

<laiked.iinit.deiignalor>CVH6S VA.16E 3ilsct="/MOC;ATO;service_tasked_segment.laik_untand_kicalion.segmenl'aicrafl_ <l,IiOp-ArcraltCalSign>CLAW 71<.T,lilOp AitcraftCalSign.

ijlasked.un (.design alors m8sion.data.segmenl(arcraft_maiion.dat»'masion_commanderi'= !;l.lilOpAirComponenl>

flaikM.un il.kJcalKmJaikiinili iil.liiOp Commander: !MilOoAirComponentrdlparse'yae="Heiource">

<icao_baM.i:t>tlt'Nira!taii.bas5_ci>dt> 'l.liiOp Unit»j5igned> <l,UOp:Packageklentificabon>AN<;i,UOp:Packageklenlilication>

tflaskta_iinl.kjcalion.laskiiii(> <)Li\ value-ol <UiOp:Un(Aulgi)ed>CVH63 VA.165<mOp.UntA»igned>

«om™nli>l)()201-0032(Wcommenli> !electr'MOC/AraserviceJaiked.segmenl/taik_unit_and_k)calion.iegmennajk_unit^ <UI0p:l.liuiDnNuM>er>0111kAIII0p:l<IiuonNLimber>

<Uinn-D.k>»n<UiR^nTvn.,Ur<IUinn-D..T».uLI>,.«>.Tun» ^
g moc2doml U MOCTest g XSL Outputhtml |

188

The DOKS concept originated from an effort to design a knowledge base

to recognize and understand natural language text from tourists using the Dusseldorf Tour

Guide (Wachsmuth, 1991, 1). The background knowledge required to recognize all

possible usages of text applicable to this undertaking was enormous and performance was

critical. The design team understood that large knowledge bases were unavoidable for

the complexity of the problem and took to proposing modules of knowledge called

knowledge packets for specifying when a piece of knowledge should be accessed

(Wachsmuth, 1991, 3). As a result, Knowledge Modules (KMOD) were introduced as a

mechanism to effectively group knowledge statements that belong together into

autonomous packages.

With this idea in mind the similarities can be drawn from their large

complex problem to any problem requiring the implementation of ontologies. Instead of

designing an ontology to make runtime imports from many different ontologies, establish

multi-disciplined knowledge module ontologies containing prepackaged information

tailored to specific problem sets. This idea is particularly applicable and well suited to

problem spaces in the military domain.

In the future, the goal is to dynamically create knowledge modules on

demand with the most current knowledge to the specification of the ontology. In the

interim the knowledge modules are formed and stored in a static state until they are called

to use. The knowledge module consists of an ontology and a set of instances tailored to a

specific problem. Let us look at a concrete example in the Military Domain regarding a

KMOD Ontology for Dismounted Ground Tactical Routes (DGTR) (See Figure 56).

The problem space of DGTR is highly specialized. The knowledge

required to plan and execute a DGTR is very different from the knowledge required to

plan and execute a Mounted Ground Tactical Route or an Air Route for reference.

Because of the specialization required it made sense to use the DOKS knowledge module

concepts to organize the knowledge required to plan and execute a DGTR. As a result,

when a DGTR is being planned the ontology and the instances of the DGTR KMOD

would be recalled to support the application managing the DGTR planning. The DGTR

KMOD would contain all knowledge applicable to planning and executing a DGTR.

189

In order to formulate a DGTR KMOD, an intensive knowledge acquisition

effort was undertaken to elicit how experts in this area planned, executed and perceived

DGTR (Stine, 2000, 15). We were able to use research done for a previous thesis to

supply the required background knowledge from what should be included in the KMOD

to how the KMOD was organized. Stine’s research supplied us with an informal

Restricted Vocabulary captured directly from the interviews with the domain experts.

This Restricted Vocabulary was incorporated into the ontology design. Leveraging

Stine’s research we were able to conceptualize the DGTR KMOD. Let us look at the

supporting components of the DGTR KMOD to see what the likely content of the KMOD

could be.

Illumination
Ontology (OWL)

Organizational
Ontology (OWL)

Enemy Ontology
(OWL)

PR Action Ontology
(OWL)
TTPs/doctrine

Area of Interest
Ontology (OWL)

objectified environ

Material Ontology
(OWL)

Dismounted_Ground
_Tactical_Route

KMOD

Terrain Ontology

Articulation
Ontology

PR Domain Ontology
(OWL)

Weather Ontology
(OWL)

Upper-Level Meta-Ontology

Domain Oriented Knowledge Structure

Functional Organization of Knowledge
Figure 56. DGTR KMOD Components Example.

Now that we see the structure of the supporting knowledge required by the

DGTR KMOD, lets examine the KMOD Domain Concept Tree the ontology was derived

from (See Figure 57). When looking at the terms notice the usage of the Restricted

Vocabulary and how the taxonomy is structured to import supporting knowledge of the

categories shown above as it is developed. The red dots indicate a position in the

190

taxonomy where a supporting ontology will be inserted. As one might expect KMODS

are much more difficult to design and requires large amounts of domain expertise decide

on the concepts to be included in the ontology

Enemy
Ontology

Organization
Ontology

Area of
Interest

Ontology

Weather
Ontology

Illumination
Ontology

Terrain
Ontology

Weather
Ontology

Figure 57. DGTR KMOD Supporting Components.

E. SUMMARY

Ontologies are an artifact composed of classes, properties and relations forming

an aspect of the SWEB that will allow machines to interpret content and reason about it.

The task of designing ontologies can be traced back to Plato and Aristotle as they

attempted to classify objects of the world. An ontology is a specification of a

conceptualization where a conceptualization is some abstract, simplified perception of the

world we wish to represent for some purpose (Gruber, 1993, 1-2). Ontologies must be

designed for a specific purpose and applied to a specific problem space for the best

chances of implementation and design success. Ontologies can be formally written in

many different knowledge representation languages, but OWL will likely be adopted by

191

the W3C as its recommendation and become the de facto standard. OWL is a description

logic based language that can be further subdivided into three specialized languages

whose usage depended on the requirements of the user. In order for an ontology to be

implemented successfully it takes commitment by the domain members to the lexical

terms, definitions and concepts. Without commitment the likelihood of another

application reusing or extending the ontology is very low. There are several design

methodologies a developer can use when designing ontologies, but only one methodology

explicitly advocates feasibility study and requirements generation. The tool support for

ontologies is rudimentary at the present time and lacks the necessary validation and

verification mechanisms to make the process of merging, combining and articulating

ontologies user friendly. The realization of the SWEB will depend on the adoption,

design, implementation and reuse of ontologies across the Web. Once machines can

interpret web content the industries and agencies adopting the SWEB will realize the first

portions of Return on Investment (ROI).

192

THIS PAGE INTENTIONALLY LEFT BLANK

193

VII. SWEB KNOWLEDGE BASE

A. BACKGROUND
The purpose of this chapter is to demonstrate the importance of the network to the

Knowledge Base of a SWEB application. We will review design patterns and

considerations contrasting the Knowledge Base (KB) of an SWEB application with the

KBs supporting the Expert Systems (ES) of the 1990’s. We will demonstrate how the

SWEB KB can employ mechanisms to reason and apply rules against enabled content

and discuss techniques for design and organization.

The term Knowledge Base (KB) originated from the early efforts of Artificial

Intelligence to replicate human decision making (Kurzwiel, 1990, 292). The KB was

intended to capture the ideas, concepts, descriptions, constraints, uncertainties and

relationships of the domain. The KB was to replicate the knowledge a domain expert

would use during the course of solving a domain related problem (Kurzweil, 1990, 292)

(Marakas, 1999, 242). The design pattern that emerged for a KB was one of a centralized

repository of codified, machine readable knowledge created detail by detail, relationship

by relationship, by highly skilled human, knowledge engineers (Dean, 2003, 17)

(Kurzweil, 1999, 292). To be effective, these KBs were supported by vast databases

storing every conceivable fact the human designers could foresee being required to

support the decision making process for a specific domain. The KB was the brains of

what we know today as Expert Systems (ES).

One of the first ES, DENDRAL, began development in early 1965 and continued

on through the mid-1970s. The success of DENDRAL and its design methodologies

gave rise to the popularity of the ES industry during the 1980s (Kurzweil, 1999, 294). ES

technology was developed for applications in the fields of medicine, insurance, energy,

and the automotive industries to name a few (Kurzweil, 1999, 300). While certain

industries experienced success in specific domains, the time to construct a KB, the

expertise required and the physical storage capacity necessary began to reveal severe

limitations in the scope of ES applicability.

194

Today, as the SWEB and its technologies seek mainstream adoption, the concept

of a KB is finding new life and is being redefined. The KB of SWEB applications will be

expected to function in a similar capacity as its predecessor in the ES field and will

undoubtedly suffer many of the same problems. The SWEB, however, will offer the new

generation of the KB the unique ability to leverage the knowledge contained in the vast

networks of the World Wide Web. Let us be reminded that the goal of the SWEB is to

link ontologies, make data and knowledge stores enabled by common meaning and

platform independence so that it is available on demand. How will the “networked” KB

of the SWEB be designed? Will the KB still be required to store all potential facts to

support domain decisions a priori? The networks comprising the World Wide Web and

the technologies enabling the capability to achieve common meaning are truly creating

some interesting options.

This chapter is intended to guide the reader in attaining a better understanding of

the functions and interactions of a traditional KB, as well as a “networked” KB, as it will

likely occur in SWEB applications. We will discuss the KB in the traditional AI terms

from its definition, design criteria, components, organization. This discussion will rely

on the recollection of many of the foundational concepts we have discussed in early

chapters as the KB is where all the concepts converge.

B. KNOWLEDGE BASE DEFINITION

The traditional definition of a KB varies between the expert and the context for

which it was formed. Maedche et al define a KB as a collection of object descriptions

that refer to an ontology (Maedche et al, 2003, 325). We will refer to this aspect of their

definition as the concise portion. The definition is then extended by exhaustive

enumeration, just as an OWL class axiom might define a class by extension94. It is worth

examining this enumeration in detail and comparing it to Noy and McGuinness’s

definition of KB to identify the points of difference.

Noy and McGuinness define KB as an ontology along with its set of instances and

further state that a fine line exists where an ontology ends and the KB begins (Noy et al,

94 See Chapter VI.

195

2001, 3). That said; let us continue with Maedche et al’s definition to see if we can

determine if it is this fine line they were hoping to expose by the enumeration included in

their definition. Maedche et al’s enumeration of what a KB contains follows:

• Lexicon-set of signs for instances (ontology)

• Reference function-linking instances to classes and properties they
correspond to (ontology)

• Set of instances

• Membership function relating instances to concepts (ontology and
instances)

• Instantiated relations (ontology and instances)

• Axioms (some in the ontology)

• Reference to an ontology (Instances)

In the concise portion of Maedche et al’s definition we find agreement among

both experts’ definitions that an ontology is a part of the knowledge base. Curiously, the

distinction Noy and McGuinness make treats the ontology as the mechanism in which the

domain is exclusively modeled using a knowledge representation (KR) language, such as

OWL, that embeds the relations and references within the representation. We have

annotated the enumeration above in terms of Noy and McGuinness’s definition. In

parentheses we have labeled whether the instances or ontology handles the function.

Maedche at al leave this open ended and generic. If we take Noy and McGuinness’s

definition and assume the ontology handles the task of modeling the domain, then we

have effectively consolidated bullets 1-2, 4, 6-7 of the KB enumeration into the

responsibility of the ontology, leaving only the bullets related to instances as stand alone

concepts95.

Obviously, Maedche et al were revealing a design choice as to where to model the

domain, the KB or the ontology (Maedche et al., 2003, 325). This choice brings us to our

first important design decision. If the line between the ontology and the KB is so fine,

according to Noy and McGuinness, does it really matter where the domain is modeled?

We would submit that in a KB of the traditional sense found in an ES in the 1980s it may

95 An argument can be made for bullet 6, axioms, to be considered a standalone concept as well. This

categorization would be dependent on whether or not the application required a more specific rule set
outside of what the ontology could provide.

196

have mattered, but today with the prevalence of networks the choice to model the domain

in the KB vice the ontology is not a significant performance distinction as long as the KB

is exposed and accessible to the network. One caution, however, might be found in the

extensibility aspect of the domain model. If the KB is used to model portions of the

domain instead of exposing it through an ontology, the KB must also be exposed to the

extent it was used to model the domain if the domain theory is to remain extensible.

Therefore, the extensibility of the domain theory and the KR can be diminished and made

less transferable if care is not taken ensure the domain theory can still be exposed. With

SWEB applications we do not see this as a huge distinction between the definitions;

however, in these cases we recommend careful consideration be given so as not to subdue

the extensibility of the domain theory and prevent it from being reused and extended. As

a counterpoint, there are likely applications where the KB must be used to model portions

of the domain. Let us continue and make two more points about the definition of KB.

The two previous definitions, though seemingly complete, did not make mention

of belief, reasoning or truth. These three aspects of a KB are essential to understanding

how a KB functions and a case can be made for inclusion of these aspects into any

definition. Levesque suggests a KB is a collection of symbolic structures representing

what it believes and reasons with during operations on the system (Levesques, 2000, 8).

The symbolic structures can be equated and mapped with straightforward precision to the

ontology and its instances. To help us understand the “belief and reason” portion, let us

look at one last definition to gain clarification.

Wachsputh’s definition states a KB is a set of identifiable statements, each of

which interrelates domain specific concepts and asserts something held for true in a

modeled world (Wachsputh, 1991, 5). The latter definition substitutes truth where

Levesques had belief. As we shall see in our upcoming discussion, what a KB knows is

what is true96. That which is true to a KB is considered its belief. What it knows and

believes is therefore what it reasons with during the course of operation. To further

support our discussion about where the ontology ends and the KB begins, we know we

can assert what we believe to be true in a domain either in an ontology or the KB. As

96 This is not to be confused with the truth of the fact with respect to the world however. The KB can
contain false facts it just does not know they are false (Truth Axiom covered in the reasoning chapter).

197

such, as long as the belief of a domain is clearly and consistently asserted somewhere,

whether the KB or the ontology, and proper care is taken to ensure extensibility, then the

system will function.

Finally, let us analyze the critical aspects of a KB we have exposed from our

analysis of the four definitions. According to our analysis a KB should include:

• Ontology

• Instances of the ontology

• A set of facts believed to be true to reason over

• Network interface

When taken from the traditional perspective one might stop our analysis and settle

with the ontology, instances of the ontology and a set of facts to reason over. But the

network is the critical component of the KB of the SWEB. As such, we added it to our

enumeration of required KB components (See Figure 58).

As we made reference to above, SWEB applications will rely on the networks of

the World Wide Web to provide data, information, and knowledge on demand. The

value of a KB in a SWEB application is not necessarily the contents of the KB at present,

but the speed and the knowledge sources it can discover, access, enable and reason

against available from the network. These properties are dependent on reliable networks

and deep interoperability provided by common meaning established by interconnected

ontologies. The enabling technologies and mechanisms discussed in the Data Sources

and Distributed Computing chapters are intended bring about reliability in the network

and data-level interoperability. While the centralized knowledge base is still very much

the comfort level of designers and is used in most knowledge based systems, the KBs

supporting SWEB applications should include the network as an essential component of

its KB (Dean, 2002, 17). After all, the knowledge is in the network.

198

Ontology

Instances of
an Ontology

Facts

σι

h

σoutlier

σinfer

Router
DB

Gateway

KBNetwork
Switch

Knowledge Base

Figure 58. SWEB Knowledge Base Schematic.

C. KNOWLEDGE BASE COMPONENTS

As we might have discerned from the definitions, a given KB contains certain

entities and concepts consistent across all KBs. We will discuss each of these entities in

detail in the section that follows. These entities can be further classified into “what a KB

has” and “what a KB does”. The following assertions pertain to a generic KB and will

function to bound our upcoming discussion:

• All KBs have facts, propositions, belief, and representation.

• All KBs must reason, must support human or programmatic interaction
and be maintained.

Let us start our discussion with what a KB has.

1. Facts
The most basic element of a KB is a fact. A fact is simply a statement about the

domain of discourse the KB takes as true at the time of assertion (Fagin, 1995, 116)

(Levesque, 2000, 3). Facts can be either asserted in the form of a TELL statement to the

KB or retrieved from the KB in the form of an ASK statement. Facts are formed into

sentences and stored in the KB as such. A KB sentence must take the form of a subject,

predicate and object. Sentences are the subject of reasoning operations within a KB.

199

Sentences communicate ideas or abstract entities that can be true or false, right or wrong

(Levesque, 2000, 3). These abstract entities are called propositions. Sentences along

with their propositions can be told to a KB and they will either be supported as logically

consistent, in which case they are accepted into the KB, or found logically inconsistent in

which case they return errors when reasoned against.

2. Belief
The KB’s belief is the manner in which the KB implicitly imagines the multiple

ways the world can be true (Levesque, 2000, 4). To continue we must review the two

views of knowledge from the Knowledge Chapter, the “one world” and the “possible

worlds” theories. If the KB aligns with the one world theory we can think of the

knowledge contained within the KB as a set of propositions we hold to be true against the

model of that one world. This perspective of the KB’s propositions is consistent with our

one world or extensional knowledge view. To review, extensional knowledge is largely

assertional knowledge about individuals and tends to be somewhat more dynamic in

nature when compared to its counterpart intensional knowledge (Gardenfors, 2000, 152).

The alternative belief of a KB can be thought of in terms of the possible ways in

which the world can be. Each of these different ways is considered a truth condition and

takes the form of intensional knowledge. Intensional knowledge is largely declarations

describing the general properties of concepts and tends to be more timeless. Intensionally

aligned propositions will be classified by the KB into groups of propositions that are

incorrect, those that are consistent with the way the world is according to the logic of the

KB, and finally the way the world really is. As we also recall, the KB only knows the

propositions it believes to be true and has no way to determine the true state, or the way

the world really is. Regardless of the proposition’s alignment, extensional or intensional,

the KB’s belief is the way in which the KB’s logic views the world. There are several

knowledge axioms guiding the belief and truths of a KB that we will discuss at length in

the reasoning section.

3. Representation

In the previous sections we established that a KB has a set of facts, formed into

sentences that communicate ideas called propositions. The propositions created by

200

combining the facts of a KB are the concepts existing in the domain of discourse. The

KB is told these facts about the external world, either programmatically or via human

input. The KB can then be asked queries against those facts or propositions (Fagin, 116,

1995). Since we have established that the ontology is part of the KB and we know that

the ontology must be represented by a Knowledge Representation (KR) language, it is not

difficult to conclude that the content within the KB, from the facts to the propositions,

must also be represented and compatible with the ontology. KR, as described by

Levesque, is concerned with using formal symbols to represent a collection of

propositions believed by some KB97 (Levesque, 2000, 6). Earlier in this work we

discussed OWL as the soon to be W3C’s recommendation to represent ontologies. This

recommendation also extends to the instances or facts of the KB and will be the terms in

which we will describe KR in this work.

When we examine the example OWL representation of the below propositions in

Figure 59, we notice the term “Tracked98“ in our proposition can easily be described

further in an infinite number of supporting ontologies with varying degrees of specificity.

In our KB, however; we have described “Tracked” consistent with the purposes for which

our users require it described. Our description is simply not wheeled and self propelled.

We know there are an infinite number of propositions that can be believed about the

concept “Tracked,” of which we are only representing two (Levesque, 2000, 6):

• not wheeled

• self propelled

97 Levesque uses the term agent. We substituted KB for agent as that is the topic of our conversation.
98 When we refer to “Tracked” we are referring to the tread of a tank or armored personnel carrier.

201

Figure 59. Tracked Class Representation Example.

According to Levesque, it is at this point where “reasoning must bridge the gap

between what is represented and the full set of propositions believed by the KB”

(Levesque, 2000, 6). It is important to note that the reasoning can only occur to the

extent of the completeness of the represented concepts within a domain, as we shall see.

We will demonstrate how reasoning can accomplish this in a later section.

In Figure 60 we have listed some propositions containing facts asserted to our KB

both in the form of OWL marked up concepts and English sentences. Both communicate

the same ideas or concepts and are formed by the same set of facts. The OWL concepts

differ from the English sentence by enabling the computer to interpret the meaning of the

concept relative to relationships and comparisons with other marked up concepts within

the domain. The computer can accomplish this through interpreting the description logic

underpinnings and the formal semantics abstracted by the OWL markup. The accuracy

of the interpretation of the concepts by the computer is directly influenced by the

completeness and accuracy of the KR representing the concepts (Marakas, 1999, 264).

This is due to the fact that the KR is just a representation of the knowledge; it is not the

knowledge itself (Marakas, 1999, 264). KR is a surrogate for entities that cannot be

represented in a computer such that it encodes knowledge (Sowa, 2000, 135). The KR,

therefore, is the computable model that allows the ontology and the logic to be

implemented within applications (Sowa, 2000, xii). Currently, with the exception of very

202

few specialized systems, the English language cannot be interpreted by computers99, one

of the reasons KR is required.

English Sentence/Proposition (S1)

ZSU 23-4 anti-aircraft systems are Self-Propelled (SP)

English Sentence/Proposition (S2)

Wheeled anti-aircraft systems are Self-Propelled (SP)

Figure 60. OWL Knowledge Representation Example.

4. Reasoning

Reasoning is the action coming from what a KB believes true about the world that

is not explicitly stated (Levesque, 2000, 10). As we said above reasoning is the bridge

between what we have explicitly represented in a KB and what can be included in the set

of believable propositions as determined by the logic and representation of the KB. If the

KB was unable to reason, it would function much like a database only able to return

explicitly stated and stored facts and propositions. The KR and the logic embedded

within establish the belief of the KB through the embedded logic of the KR and enable a

KB to reason about its beliefs (Levesque, 2000, 10). As we briefly mentioned above, the

99 Natural Language Processing (NLP) is another important emerging field.

203

KB bases its belief on what it is told (facts) and what it takes to be true. How do we

know what is true? To establish this concept let us examine the Knowledge or Truth

Axiom.

a. Truth Axiom
The Truth Axiom, as described by Fagin, is one of the distinguishing

characteristics between knowledge and belief (Fagin, 1995, 32). The Truth Axiom states

that a KB or system, bases its belief on what it has represented. We know from our

discussion above that the KR at the atomic level represents facts. If facts are represented,

then facts are the basis for the KB’s belief as we established above. A fact, by definition,

must be believed to be true at the time of assertion to the KB (Fagin, 1995, 33).

Although, as Fagin states, a KB may not know facts that are true, it is the case that if a

KB knows a fact that it must be true. In the case of our Anti-aircraft ontology two facts

that we know our KB knows are listed in Table 7 below.

Facts Condition

(F1) Tracked anti-aircraft systems are Self-Propelled

(F2) Any Self-Propelled anti-aircraft system can also
be wheeled

True

Table 7. Example Facts.

 The Truth Axiom distinguishes between knowledge and belief by further

stating, “A KB may have false beliefs, but it cannot know that something is false (Fagin,

1995, 32). This may be confusing, but if we decompose the statement we can understand

why the statement must be true. To make this point let us restate what we asserted above

in slightly different terms. We stated that a KB cannot know something that is not true.

A restated version in different terms follows that a KB cannot know something that is

false. This follows because “not true” is a synonym for “false”. To continue, a KB only

knows facts, and by definition facts are necessarily true. So, a KB can falsely believe

something, but it cannot know what it falsely believes is false, since it only knows facts,

and facts must be true by definition. Establishing that facts are true and that the belief of

the KB is based on its facts is a central concept to understanding reasoning.

204

b. Entailment
The product of reasoning itself is referred to as an entailment. An

entailment is defined by Merriam-Webster’s Dictionary as “Something that is inferred or

deduced.” Levesque describes an entailment by propositions represented by a set of

sentences (S) that entail the proposition represented by sentence (P) when the truth of (P)

is implicit in the truth of (S) (Levesque, 2000, 10). To continue our example from above

let us apply this to assist us in understanding the concept of entailment.

We asserted the propositions contained in Table 8. We know that since

the propositions consist of facts, these propositions must be believed to be true. As such,

let us form a logical entailment from the propositions. A likely entailment would be Self-

Propelled systems are wheeled and tracked. We can easily see that the truth of our

entailment is in fact implicit in the truth of our set of sentences (S). Therefore, the KB

should believe the entailment because it follows from two propositions that are explicitly

represented (Levesque, 2000, 13). To simplify, the reasoning mechanism in a KB must

compute all possible entailments.

 Sentence Condition

Sentence
Set
(S)

(S1)Tracked anti-aircraft systems are Self-Propelled

(S2) Any Self-Propelled anti-aircraft system can also
be wheeled

True

Sentence
(P)

Self-Propelled systems can be wheeled or tracked100
(Entailment)

True

Table 8. Entailment Example.

c. Computer Reasoning

Computers have the ability to reason in many different ways, some of

which are complex and others are quite simple. For the purposes of this work our intent

is to highlight a few of the basic ways computers reason in Description Logic (DL) based

constructs and then show how reasoning can be applied to the ontology and the KB in a

100 We also must make the assumption that Self-Propelled Systems cannot be both wheeled and
tracked. This would likely be handled with a Disjoint Axiom. If we make this assumption our entailment
is valid.

205

military example. This section will highlight many of the concepts and ideas we have

discussed so far. Before we begin with the analysis of the example let us examine the

basic principals of computer reasoning.

(1) Modus Ponens. Modus Ponens uses substitution and what

it knows about the world from the facts in the KB to make very powerful inferences.

Modus Ponens states that if A is true and A implies B (A→B) is true, then B is also true

(Marakas, 1999, 242) (Russell, 1995, 269). Let us look at Table 9 to see how Modus

Ponens applies to the Anti-aircraft example we started above. Table 9 illustrates the

Domain Concept Tree from the ontology so we can establish traceability to where the

truth conditions reside that Modus Ponens is referring to. For our examples all our rules

and truth conditions are traceable to the description of the concepts in the ontology. In

this exemplar we did not apply external rules. We will continue our discussion with the

Threat Antiaircraft System example to illustrate the powerful nature of SWEB

application reasoning against the class hierarchy of our ontology.

Name Sentence Condition

A Tracked Anti-aircraft Systems are classified as Self-
Propelled (SP) and not static

True

A→B ZSU 23-4 (known tracked system) is classified as
Self-Propelled (SP)

True

B ZSU 23-4 is not classified as Static True

Table 9. Modus Ponens.

By examining the domain concept tree and the snippet of markup

from the ontology we can see how Modus Ponens can work inside the rules established

by the ontology. If we refer to the proposition asserted by Sentence A above we see that

Tracked Anti-aircraft systems are SP and not static. If we refer now to Figure 61 we can

see this fact is true. In fact the restriction or rule imposed by this ontology states a Threat

Anti-aircraft System can have only one Mobility Classification and therefore, if it is

classified as Self-Propelled, it cannot also be classified as static. If we look further we

can identify a subclass of the Self-Propelled Mobility Classification called Tracked.

Therefore, the ontology established everything in Sentence A as true.

206

Let us now look at the representation to determine how A implies

B (A→B). If we refer to the markup snippet from the instance document below, we

observe the ZSU 23-4 system contains tag hasChassis with the value being Tracked. This

asserts a ZSU 23-4 as a tracked system, and since it is a tracked system we know it is also

Self-Propelled because tracked is a subclass of Self Propelled. Because it is Self-

Propelled we know it cannot be static, because of the restriction allowing only one

Movement Classification. Therefore, we know A implies B (A→B) is also true.

Finally, Modus Ponens allows us to state that the ZSU23-4 is not

static even though it is not explicitly stated. This is a very simple example, but there is

value gained from a SWEB application able to execute these types of simple operations

on the fly. The classification example we just discussed is currently done by a human

analyst. Now we understand where the truth conditions originate, let us look at the

general procedures that apply our rules inside the inference engine.

Mobility_Classification
oneOf

Static
ManportableSelf_Propelled

Towed

Antiaircraft_System

H
a s_M

obility_

C
las sificatio n

subClassOf

Tracked Wheeled

ZSU 23-4
Member of the class

extension

Restriction or
Rule (Type of
cardinality)

Code View

Domain Concept Tree
View

Figure 61. Anti-aircraft Modus Ponens Example

(2) Chaining. Chaining is a basic procedure that applies the

rules of deduction to produce a line of reasoning (Marakas, 1999, 242) (Russell, 1995,

272). There are two types of chaining, forward chaining and backwards chaining. It is

important we can differentiate between these terms so we can also differentiate between

the types of procedures employed by the various inference mechanisms.

207

Forward Chaining. Forward chaining is executed when a new fact

or proposition is added to the KB. In forward chaining the inference begins with the

assertion of a new fact and attempts to establish conclusions based on the new fact

(Marakas, 1999, 242). The forward chaining procedure adds all sentences to the KB that

can be inferred from the new fact (Russell, 1995, 274). Forward chaining slowly builds

up a general picture of the problem space as new facts become available. Forward

chaining is not directed at solving any particular problem and can be referred to as data-

driven or data-directed (Russell, 1995, 274). To reinforce our understanding of the

forward chaining procedure we will look at an example (See Table 10).

Table 10 illustrates the assertion of two new facts F1 and F2 to our

KB. From F1 and F2 the Forward Chaining inference mechanism in our application

immediately attempts to draw new conclusions from the new facts. From the new facts

the inference mechanism was able to conclude C1. Again our forward chaining

mechanism was not trying to solve a specific problem it was continually adding to the

KB’s picture from the fact assertions entered into the KB from the working memory or

data input (Marinescu, 2002, 440).

Name Sentence Condition

New Facts
Enter KB
F1 and F2

(F1)Tracked anti-aircraft systems are Self-Propelled

(F2) Any Self-Propelled anti-aircraft system can also
be wheeled

True

New
Conclusion

(C1)

Self-Propelled anti-aircraft systems are wheeled and
tracked

True

Table 10. Forward Chaining Example.

Backwards Chaining. Backwards chaining is designed to find all

the answers to a question ASKed to a KB (Russell, 1995, 275). Backwards chaining is

executed by checking to see if the ASK can be provided directly from the content of the

KB (Russell, 1995, 274). Backwards chaining is referred to as goal directed because it

208

starts with the goals and works backwards to find support for the goal (Marakas, 1999,

243). To help illustrate this point let us take our Modus Ponens example above and

transform it into a backwards chaining problem (See Table 11).

A backwards chaining problem starts with the goal and in our

example the goal is that the ZSU 23-4 is not classified as static. Next the backward

chaining procedure would examine the facts and propositions within the KB to see if the

goal can be supported by what the KB knows. In fact, in our KB we would be able to

return the facts contained in Table 11 in support of our goal. Since these facts support

our goal we can infer that our goal is true.

 Sentence Condition

Goal The ZSU 23-4 is not classified as Static Unknown

Fact

Sentences Supporting Goal

A Anti-aircraft systems can have only one mobility
classification

True

B ZSU 23-4 is Self-Propelled (SP) True
C ZSU 23-4 is Tracked True

Table 11. Backwards Chaining Example.

Forwards and Backwards Chaining Discussion. From our

examples of forwards and backwards chaining we can begin to see some potential

advantages and disadvantages of both. According to Marakas there are two primary

factors to consider when choosing whether to implement a forwards or backwards

chaining inference mechanism. First and foremost the expert reasoning mode of the

domain should be considered (Marakas, 1999, 244). If the experts of a domain reason

similar to forward chaining then this may well be the determining factor. Choosing an

inference mechanism with a reasoning procedure similar to the experts of a domain may

serve to avoid problems with both Knowledge Representation and Knowledge

Acquisition associated with reasoning. The other consideration is efficiency. If you have

a large KB with a large number of goals in comparison to the amount of data or new

facts, then forward chaining may be the most efficient (Marakas, 1999, 244). Backwards

chaining in this case would be required to cycle through all the facts of the KB and match

each fact to the goals it supports. Depending on the size of the KB it could take time.

209

Both methods can be counted on to establish a formal line of reasoning and arrive at

satisfactory conclusion. The application should largely determine the procedure more

suitable for inclusion.

Classification and Subsumption. Classification and subsumption

are the main inference tasks for Description Logic (DL) based applications.

Classification is simply checking if an object or concept belongs to a certain category

(Russell, 1995, 323). Subsumption is related to classification in that it determines if one

category is a subset of another based on the definitions and descriptions in the ontology

(Russell, 1995, 323). As we know from our previous discussion the Web Ontology

Language (OWL) will be named the W3C recommendation soon and it is a DL based

language. Since OWL is DL based and is likely to be widely used and adopted

throughout the SWEB, it is also very likely that many applications will employ

classification and subsumption inference procedures. While First Order Logic (FOL)

makes it easy to say things about objects, DLs provide a sophisticated system for defining

categories of objects in terms of existing relations (Russell, 1995, 323). Of significant

importance to these types of inference procedures are the concepts of inheritance and

multiple inheritance. Inheritance for the purposes of this work is defined as the

relationship among classes or concepts wherein one class or concept shares the structure,

behavior or attributes defined in one or more other classes or concepts (Booch, 2001,

112). We refer to the class or concepts from which another class inherits as its superclass

(Booch, 2001, 112). If the class or concept inherits from more than one class then we

refer to this as multiple inheritance. Let us now turn to a live inference example to

solidify our conceptual points.

d. Reasoning Examples
To demonstrate a small, simple aspect of the reasoning capabilities

available to a semantically enabled system, let us implement the Fast Classifications of

Terminologies (FaCT) Reasoner101 against our Threat Antiaircraft Systems example. To

101 FaCT was chosen for demonstration purposes because OilED provides an integrated reasoning

environment without programmatic manipulation.

210

do so we will establish a supporting KB102 inside the OilEd Version 3.5103 (DIG)

Ontology Development Environment (ODE). It is worth mentioning the reasoning and

inference tools and engines currently available for use in semantically enabled

applications are largely academic and austere104. However; significant, rapid

improvements continue to be made. Our reasoning exemplar will employ the FaCT

Reasoner capable of checking the satisfiability of a model by the class hierarchy and the

discovering implied subsumptions in the model (Bechhofer, 2001).

(1) FaCT Reasoner. FaCT is a Description Logic (DL) based

reasoner offering sound and complete reasoning supporting two DLs, SHQ or SHF105

([2] Bechhoffer, 2001, 7). FaCT reasoning is user executed by connecting to the FaCT

reasoner and requesting verification of the model. FaCTs connection is through a

CORBA based client server either running locally or remotely ([2] Bechhofer, 2001, 8).

Satisfiability. When a user requests verification the ontology is

translated into a SHQ knowledge base and sent to the reasoner for classification. Each

class is checked for satisfiability by first determining the superclass of each class. After

verification unsatisfiable concepts appear in red in the list of classes (See Figure 62). In

the case below the class ZSU 23-4 is unsatisfiable due to the Gun Dish and Dog Ear

radars being improperly AND’d when an axiom declares them as DISJOINT entities.

The FaCT Reasoner catches the inconsistency and prompts the user to correct the error.

A reasoning function in a SWEB application would prove valuable for logical validation

of domain models and instances.

102 KB defined as Ontology instantiated with instances (Noy and McGuinness).
103 OilEd V 3.5 (DIG) was released November 2002 by the University of Manchester and Sean

Bechhofer and Gary Ng. OilEd is an integrated, visual ontology editor capable of exporting an ontology in
DAML, OWL, Dotty, and HTML presentation container.

104 Some of the better developed reasoning systems include Java Expert System Shell (JESS) available
from Sandia National Labratories, Java Theorem Prover (JTP) available from Knowledge Systems
Laboratory at Stanford University, Fast Classification of Terminologies (FaCT) available from the
University of Manchester.

105 Current version runs SHQ DL. SHQ and SHF are both members of the DL family with their own
language specifications.

211

**Gun Dish and Dog Ear as DISJOINT therefore
they cannot be AND’d. To Fix user must logical

change AND to an OR

List of
Classes

Figure 62. Unsatisfiable Example.

Subsumption Checking and Classification. Similar to the

satisfiability function, when the user requests verification the reasoner looks to discover

implicit subsumptions within the model. Once implicit subsumptions are located the

hierarchy view is changed to reflect the newly discovered subsumptions. The user is

again prompted to commit the newly identified subsumptions to the model or discard the

results. Let us look at a live example of the subsumption checking and classification

example with our Threat Antiaircraft Systems example.

The Implicit Subsumption in Threat Antiaircraft Mobility

Classification. For our example let us take the Threat Antiaircraft (AA) Systems we have

in our KB and further classify them. For our purposes we are interested in establishing

the mobility classifications within our model. Currently our model has all the AA

systems classified under the superclass Threat Antiaircraft Systems. To begin, let us

further classify the Threat Antiaircraft Systems contained in our model into the more

specific Mobility Classifications of Towed and Self Propelled. To start, we will establish

the classes we wish our reasoner to classify our systems into. For our example the target

classes are Self Propelled Threat AA System and Towed Threat AA System. Notice we

use the naming convention for human readability and traceability back to its superclass

just as OO design practices suggest. Now that we have established our classes shown in

212

red in Figure 63, let us set the expressions and axioms necessary to orchestrate our

classification. Figure 63 illustrates a form of the class hierarchy prior to invoking the

reasoner. Notice the classes we established in preparation for reasoning operations.

Desired Classes
Established in

Class Hierarchy

Additional
AA

Systems
to Classify

Figure 63. Established New Classes for FaCT Classification.

Next we will establish the property hasMovement Classification

which we will include as a property restriction for every system we wish to classify. The

domain will be set to the root class, Threat Antiaircraft Systems and the range set to the

class Movement Classification (See Figure 64).

Each Class will be linked with this
property to their Mobility

Classification

Figure 64. Movement Classification Property.

^^" ̂ ^" ̂ ^^ ̂ ^^^Ud

_ ri « ;j << V .-. .'.

.»_, OMM EJFi^M rfPh «-» I—^

|>| nil iN-Ba-irM ankm t

ll (
ax dsi r r .ClHIItollB

T B«(> X). * m ■ r> 'vurM

HHM »-.,«_ ~:IM|lt

1 |*u

213

Once the property is established we now have the conditions set to

formulate the axioms that will classify our systems. When we establish the axiom we

will establish the axiom for each system individually by asserting a subclass Axiom. For

the ZSU 23-4 the subclass axiom takes the form of:

SubClass ZSU 23_4({[has_Movement_Classification some Self_Propelled]})

The axiom states the class ZSU23_4 has a movement classification

of self propelled and should be classified in the Self_Propelled_Threat_AA_System

Class. To offer provenance the Self_Propelled_Threat_AA_System Class requires all

AA Systems with a Self Propelled movement classification to be members of its class

extension.

Similar to the Self Propelled systems we created axioms for, the

AA systems with a Towed Movement Classification must have their hidden

subsumptions discovered in order to classify the towed systems into the Towed Threat

AA System Class. The axiom for the SA 5 takes the form of:

SubClass SA_5({[has_Movement_Classification some Towed]})

Once the axioms are complete for our two example systems let us

connect to the FaCT Reasoner to see our results.

We observe in Figure 65 that the FaCT Reasoner added ZSU 23-4

and SA 5 to our class hierarchy in their new classes without our model explicitly stating

it. The FaCT reasoner discovered the implicit subsumption in the model and returned the

results.

214

FaCT Reasoner
appropriately updated our

AA System Class
Hierarchy with the new

members to our classes by
subsumption checking

Figure 65. FaCT Reasoner Results from Self Propelled and Towed Axioms.

This type of reasoning procedure can supply added value to SWEB

applications by allowing data driven classification. In our example we imagine

Intelligence Analysts now being spared the menial tasks of associating characteristics

with a piece of threat equipment. The ontology, KB and Reasoner can classify the

intelligence reports as they flow in. Granted an application such as the one we are

speaking of will take a combined effort of all the concepts we have discussed thus far in

this work, but it is not too far out of sight.106 To demonstrate further value let us

continue to establish axioms to cover all our systems, and further establish an even more

granular classification on our new classes (See Figure 66).

106 Following the successful implementation of the most basic inference capabilities, sophistication

will increase and the complexity of the corresponding inferences will similarly increase.

215

Axioms established the rules to
classify the AA Systems in our

model

Results Hierarchy

New Classifications of Systems
by Mobility Classifications

implicit in the model

Figure 66. KB Mobility Classification FaCT Reasoner Results.

Let us now further classify all systems in our Self Propelled Threat

AA System by whether or not they are tracked or wheeled systems. While we set the

conditions for this procedure, and to demonstrate further value, we will set up axioms to

implicitly classify the radar systems we have in our KB into either the Target Acquisition

or Fire Control Systems class. This will more thoroughly demonstrate how we can

further classify other useful aspects of our KB and complete our example. It is important

reiterate that these classifications were not explicitly stated in our model but were

discovered by the FaCT Reasoner during subsumption checking. We will not describe all

the details of this exemplar, but suffice it to say the conditions were set for these

classifications just as our previous example. Our completed KB class hierarchy with

subsumption additions for the Radar Classification and the Tracked and Wheeled

classifications is illustrated in Figure 67.

216

Fire Control Radar

Target
Acquisition

Radar

Tracked and Wheeled
Classes of the Self-
Propelled Threat AA

System Class

Completed Model
for Threat

Antiaircraft
System Example

Figure 67. Completed Model Using FaCT Reasoner.

e. Functions
A KB must be designed to interact with human readers, inference

procedures or agents (Russell, 1995, 218). It can also be the case that any given KB can

interact with all of the potential actors, but must at least interact with one. To foster

interaction the KB must have functions or operations allowing actors to manipulate

content. The first two functions we will discuss are closely related; the first is TELL and

the second is ASK.

(1) TELL. The TELL function of a KB allows a human, agent

or inference procedure to inform the KB that a sentence is true (Levesque, 2000, 13).

This function is essentially an assertion and serves as a mechanism by which to add facts

to a KB. The KB and its embedded logic can either reply that a given TELL function is

logically consistent with its beliefs or is not. If not, the facts associated with the TELL

can be discarded or reformed.

Class Hierarchy □[nlS
- Merarctitr

lop
Chassis
E a rly_Wa rn I n g R a d a r
Move menl_C lass ITicatI o n

Man_Portable
Self_Propellecl
Static
Towed

Radar
Rai:1ar_Classiflcation
Thin Skin
Th re at_Antl a irc raft_Syste m
Cc] Antlalrcra1t_Artlllerv

Q [c] nre_Control_Radar_Systems
I c| Gun_Dlsh

B [c] ManportabIe_Threat_AA_System
fcl SA_1 S
r^l SA_7

El LcJ SA_2
SA_4
SA_7
SA 9

B Se lf_P ro p e I led_Tln re at_AA_Sy ste m |
r^l SA_4

B Cc] Sefr_Propelled_Tra(;kei3_AA_Systems
fcl SA_4
fcl ZSU23_4

B Cc] Seir_Propelled_iA'heeled_AA_SvsIem
r^l aA_9

fcl ZSU23_'l
B ^p Sijrface_to_Alr_Misslle
B I c\ Target_AcquIsIton Rai:iar_Systems

I c| Dog_Ear
B [c] T o we d_T h re a t_AA_ System

m c SA 2
m c SA 5

c ZPU 23 2
1 c| ZPU 23 2
l^ zs U23 4

217

(2) ASK. The ASK function asks the KB if a sentence is true

(Levesque, 2000, 13). The ASK function is similar to a query. When an ASK function

occurs the KB must determine if the proposition or facts within the ASK are in fact

known. The result from an ASK function should be a simple yes or no. For a visual

illustration of a TELL/ASK Function refer to Figure 68.

Ontology

Instances

Facts
σι

h
σoutlier

σinfer

Router
DB

Gateway
KB

Switc
h

Knowledge Base

Network

TELL: (FACT)SA7 is Man_portable

 This Fact is
TRUE

ADD to KB Content

ASK: Is This
TRUE??

ASK: A ZSU23-4 Manportable????

Query KB Content

Figure 68. TELL/ASK Functions.

f. Traceability

The traceability of information or pedigree is a necessary function of a KB

in order for an acceptable level of trust to be established. Traceability returns output

resembling a proof tree explicitly stating the fats and propositions that satisfy certain

properties along with their answers (Fikes, 2003, 3). The traceability function is

essentially the explanation capability of the KB that must be communicated in the user’s

terms, and above all be understandable. The traceability function of a KB allows the KB

to follow the life of a proposition from the time it is told to the KB from its originating

218

source to its usage. This aspect of traceability offers the KB a potential to learn in what

circumstances certain propositions are used and to predict usage patterns in the future.

Essentially, traceability can be a learning enabler.

g. Maintenance
The maintenance of a KB in a SWEB application must be simplified to the

point it can be done by the domain experts. For the SWEB to be widely adopted this

aspect of KB is one of many aspects that must be simplified.107 A simplified

maintenance scheme will be contrary to the KBs of ES which were painstakingly

maintained by a cadre of knowledge engineers. The SWEB must ensure the maintenance

of many different knowledge sources and subject matter experts’ work can be maintained

with relative simplicity, and with only the knowledge of the domain in which the KB

serves. It is imperative the maintainers of the SWEB KBs be able to maintain a KB

without formal training in Artificial Intelligence and still do an effective job.

5. External Rule Based System
While formally not considered a component of a KB, an external Rule Based

System capable of interacting with the KB can provide a valuable function to an SWEB

application. A Rule Based program in general is considered a declarative program

describing what a computer should do if certain conditions exist, but allows another

runtime program (execution engine) to determine how the computer should do it.

Declarative programming is very different from the traditional procedural programming

where the computer is told explicitly how to accomplish the task (Friedman-Hill, 2003,

16). For our discussion we will focus on the implementation of an external Rule Based

System as a technique to avoid the dangers of establishing too rigid of a domain theory

by transferring the application of our most specific, domain rules to the Rule Based

System (Jess). With this transfer we are building safeguards in to our application to

help prevent our most specific rules, applicable only to our application area, from

embedding in other aspects of our system, such as ontologies, agents, and knowledge

stores that could create a tight domain theory discouraging widespread reuse and sharing

107 As we indicated in the Ontology chapter, it is imperative that ontology development tools be

widely available and easy to use for large-scale implementation of the SWEB.

219

(interoperability). As we recall from our previous discussions in Chapter VI, domain

theories should make as few claims about the domain as possible allowing the domain

theory to remain flexible and easily extendable by other users and developers (Gruber,

1993, 3). In a sense, an external Rule Based System assists us in achieving this flexibility

by separating our highly restrictive claims about the domain and externally applying it

through rules on demand without effects on our more general domain theory. While

there are many Rule Based Systems and Rule Engines108 we will focus our discussion on

the use of the Java Expert System Shell (Jess) due to its active user group support,

quality documentation and its ability to interoperate with Java. While our discussion

will be Jessspecific, many of the principles and theories can be applied to most other

Rule Based Systems.

a. Rules
A Rule Based System uses rules to derive conclusions from premises

(Friedman-Hill, 2003, 17). A rule can be viewed as a type of instruction organized with a

premise on the Left-Hand-Side (LHS) of the equation, and an action on the Right-Hand-

Side (RHS) (Friedman-Hill, 2003, 17). Rules can be likened to If…Then statements in

which the LHS contains the If, or the test conditions, and the RHS contains the Then, or

the actions. If all there is to Jess is that it simply functions as a series of If…Then

statements, then why not just programmatically embed the If…Then statements. As will

be demonstrated later, Jess uses the Rete algorithm, a technique for fast pattern

matching enabling it to function orders of magnitude faster than If…Then statements

(Friedman-Hill, 2003, 134), as well as enabling us to keep our domain theory loose.

Figure 69 illustrates an example of a Jess rule we will apply in our working example

later in this section. From Figure 69, we observe that a Jess rule has a recognizable

syntax. Jess rules must conform to the constructs of the syntax to be validated and

accepted into working memory. We will not cover the Jess syntax in detail in this

discussion, with the exception of what we include in our example109.

108 See www.volantec.biz/rules.htm for a complete listing of available Rule Based Systems.
109 For more information on the Jess syntax see the Jess 6.0 User Manual at

[http://herzberg.ca.sandia.gov/jess/] or Rule-Based Systems in Java: Jess in Action by Ernest Friedman-
Hill.

220

(defrule match-unit-capability
"If a name from unit-information matches unit-name from threat-capability
 then return engagement ranges."
(unit-information (name ?n))
(threat-capability (unit-name ?n))
=>
(printout t ?n "=Match" crlf))

LHS
(If..)

RHS
(Then…)

Jess Syntax
to Define a

Rule

Comment

 Premise(s) to
match with

asserted
Facts

Symbol
Separating
LHS from

RHS

Action or
Conclusion

Statement...Tells
the Execution
Engine to do
something

Simple Jess Rule

Variable
(notice same variable

on LHS...the execution
engine will take an

action on the value of
this variable if it is
matched on LHS

Variable
(notice same variable on

RHS...this is what the
Pattern Matcher is

attempting to match

Figure 69. Anatomy of a Simple Jess Rule.

(1) XML and Jess Rules. Now that we are familiar with the

importance and benefits of XML to the SWEB and interoperability in general, we would

be remiss if we did not address how XML can be used in conjunction with Jess. From

our previous discussions and examples we demonstrated how XML, and its semantic

variants OWL and DAML, can used to markup facts or contents of a KB, but as we shall

soon demonstrate Jess rules can also be stored in a special XML language called the

Rule Markup Language (RuleML). Again, from Figure 69, we observe that the Jess

syntax is a text based. The RuleML and DAML Rules programs are underway to

standardize the storage of Jess rules in XML and DAML, and very likely OWL. We

will demonstrate an example of the power of XML based rule storage by illustrating the

relative simplicity involved in transforming a rule stored in RuleML back to the Jess

syntax by applying a stylesheet or XSL. The added flexibility of storing Jess Rules in

RuleML will enable Jess to exploit the extensibility, interoperability, and flexibility of

the XML storage format enhancing storage options, reuse and sharing (Freidman-Hill,

2003, 373)110. From RuleML, as we will demonstrate, a Jess rule can be easily

transformed to proper Jess syntax in preparation for assertion into Jess working

110 For more information on RuleML see [http://dfki.uni-kl.de/ruleml/].

221

memory. The DAML and OWL efforts will further add a self describing nature as well

as adding meaning and context to the rules, making them ready for immediate inclusion

into the SWEB.

Another option offered to Jess rules by the XML storage format

is the ability to use Java and DOM or JDOM to read in the XML enabled Jess rule

document and programmatically assert the rule in working memory through Java

within the Jess environment. Figure 70 is an example of the Jess rule we used in

Figure 69 marked up in RuleML and its XSL transformation111 to proper Jess syntax

(Friedman-Hill, 2003, 370). Standardized XML versions of Jess rules and data

structures are critical to extending the capabilities and implementation options of Jess

within the SWEB environment.

RuleML Version on match-
unit-capability

XSL from Jess in Action
Source Code

Text Output onto proper
Jess Syntax

Rule was asserted into
Jess after proper data

structures were asserted
and functioned correctly

**Snippet from actual XSL to illustrate
transformation

Figure 70. RuleML Version of a Jess Rule and Its XSL Transformation into Valid
Jess Syntax.

111 XSL available in Rule-Based Systems in Java: Jess in Action Source Code along with a validating

DTD. XML interoperability is listed as an area to be addressed in the Jess Development Roadmap
Survey results recently published on the Jess website.

' CapabilityRuleMUessRule * . " X f RuleMLOS -^1^^ ^XSLCapability Output^ igi
<^uri-3tyle3heel type=leicVxsr href^'CitOocumenb and SellngslUgrtyUly Documenb

lThesislPt(!l(ilypAIESSEMmplBfiuleMLBjisP»

<nibnim!=MclHinHa|>aMy|iriorly.->

aststytslieet «n*s.«i? 1inpJMv-v; v/3.org/1999KSl/rransform

.HMfl.^,0■>

<aloiilpiitmrtlioil=le)irJfiilenl='ni!-ft.

aitilriHpaaelMiMb='^/>

<-"»-ie.'e>ji:;wi;taie->

A

(defrule match-unit-capaliilv (unit-infonnalion (name ''n)) (Ihreat-

capabOitj' (unit-name ^n)) => (printniit t ^ n =Match df))

(Calteni nsme.-untiifjiniBtJiHi- bJfidJng.-^

<slolnime='ini»'ii->

</paltem>

-patten. nare.-threikj|m«/-biKliig.->

ohlMTC'-uni^iBfiB'n-*

<xstteflvlatatnalcll•'^lle^

<xsttE»t>4ilefnile«l)atte9(t>

<]cstvatiMfseiecl--eiiame-;>

'atsttO<l''ttiiA;</Uttal>

<xstifM='epnorly!="!.

<xsttaKt> (iledsre (saiena iftsttext'

<xstvaluMf !eled'"J6prioritif7>

<Mtteict>})ttiA;<*i!tto<t>

<Atslif>

pattern*

<rtis>

<funcli!iKab

chead>prjnliiulttJliMil>

«)tappy4eiii|)i«iessei«i='JlB'/>

aitlext>=tgt;<Aatlnt>

<xstappV4en¥htes!*lBCI=-Jrtis-fr

<xsttei(t>]UxA:<ttitte9<t>

</icsttenflale>

<vamblef>

(canstatiN =Hatdi cftf<;canstant>

</functniMal>

astlMipl>lemalcli=lB>

-rx!tfor«cliMlKl=-;pup|JpattefnV

<fttis>

<Aule>
<xstapplHefHibte3seiKl."/>

<Mtteict>ttiA:<Astteict>

c/icstfor-eacli>

t/x!tteni|ilale> II 1

222

b. Rule Based System Components
To further understand how a Rule Based System functions it is helpful to

decompose the system to its basic components and analyze each component for its

functionality. A Rule Based System can be decomposed to four components (Friedman-

Hill, 2003, 19):

• Inference Engine (Consists of Pattern Matcher, Agenda and Execution
Engine)

• Rule Base

• Working Memory

The functionality of the four components combined form the Rule Based

System. To gain familiarity with each of these components refer to Figure 71 where we

enumerate the contributions of each components to the overall Rule Based System with a

graphical depiction. We will continue to explain other aspects of Figure 71 as we

proceed through our working demonstration.

Fact 1

Fact 2

Fact 3

DATA
Stream

(Network)

Background
Facts

JESS
Working
Memory

Facts transformed
into Jess Syntax

Facts must be
asserted to the

Working Memory of
Jess

Background Facts
are Asserted or
Called to JESS

Working Memory

Rule
Base

RHS
Executed

Inference Engine
(Pattern Matcher)

Execution Engine

Java Expert System
Shell (Jess)

Rule Agenda Rules Fired by
Execution Engine

Agenda sets order in
which rules are fired

(Salience/Conflict
Resolution)

Inference Engine Controls
the process

Internal Rule Storage
and Rule Compiler

(Rete Network)

Contains all
Information

the Rule Based
System is working

with

Rules asserted to Working
Memory by Pattern

Matcher

Example LHS Actions

Print Out Message
Sending Message

Executing other rules
Executing Programs

Controlling Processes

LHS Match

Figure 71. Rule Based System Data Flow.

223

c. Rule Based System Example with Jess
Before beginning with our example we must set the conditions required

for our Jess example to properly function. According to Ernest Friedman-Hill, the

inventor of Jess, the process of developing a Rule Based System consists of the

following six steps (Friedman-Hill, 2003, 26):

• Knowledge Engineering

• Establishing Data Structures for Facts

• Continuous Testing

• Building and Appropriate and Usable Interface

• Writing the Rules

• Iteration

The six steps described above were used when developing our example

with the exception of Step 4. Our example will be executed entirely from the command

line as we eventually intend to embed Jess functionality within software agents (See

Future Work). To begin let us describe the scenario for our example and discuss the

preconditions and assumptions.

(1) Example Scenario. Our example will continue on with the

Threat Antiaircraft System thread we began building in the Ontology Chapter. Our

requirement is to implement an external Rule Based System using Jess into our

notional SWEB application. Our Rule Based Jess System must be to interact with a

data feed carrying messages containing enemy unit information. From the enemy unit

information our system must be able to recognize the unit name and attempt to match that

unit name to like unit name(s) in our Order of Battle Files (background facts). Once a

match occurs, our system must then retrieve and associate additional background facts

about the threat anti-aircraft system (engagement and detection ranges) and output the

values to the terminal. The system must also recognize if matching facts do not exist and

return a “No Match” message, as well as a recommendation to initiate intelligence

collection on the unit not matching our background facts. While this is a simple example,

it demonstrates five of the six development steps prescribed above as well as the basic

functionality of Jess.

224

Scenario Assumptions.

• We have a working SWEB application

• The Jess rules entered our system in RuleML and have already been
transformed

• This scenario will be automated with agents in future work

• The knowledge engineering was completed by drawing on our previous
example

• The background facts or the threat-capability facts were stored in our KB
holdings and asserted to Jess working memory

Develop and Assert the Jess Data structures. Since we already

collected the necessary knowledge for our previous Threat Anti-Aircraft examples we are

afforded the luxury of reusing it for inclusion in our Rule Based System and can move to

Step 2, which is to develop and assert the data structures for our example. Since our

requirement dictates our Rule Based System must recognize facts from a data stream, we

must have knowledge of the content and structure of the messages within the data stream.

We in fact know the data stream contains enemy unit information consisting of unit

name, latitude, longitude, and unit size. These attributes will become the slots in our

Jess data structures. Since we know what the data stream contains we can begin

building our deftemplate for unit-information with the slots we previously identified.

Slots can be likened to columns or attributes in a relational database. We will name the

deftemplate unit-information, after its contents, and establish slots for name, latitude,

longitude and unit-size. Within the deftemplate we can establish default values for the

slots similar to a relational database. In our deftemplate we will in fact establish default

values for the name and unit-size slots. Our data structure for unit-information is

depicted in Figure 72.

225

(deftemplate unit-information
"Information from REPEAT Message"
(slot name (default UNKNOWN))
(slot latitude (default 0))
(slot longitude (default 0))
(slot unit-size (default UNKNOWN)))

Syntax for Jess
Data Structure Optional

Comments

Default Values
for Slots

Slots

Deftemplate: unit-information

Figure 72. Jess Deftemplate: Unit-Information.

Now that we have designed and established the deftemplate for the

unit-information we must do the same for our background facts. To accomplish this we

must establish the threat-capability deftemplate. Again, we must possess some

knowledge of the structure of the source of the data. Since our internal KB possesses the

threat-capability data (we own it), we can define our background facts deftemplate.

Figure 73 depicts the threat-capability deftemplate.

(deftemplate threat-capability
"Threat capabilites similar to what an order of battle file will contain"
(slot armament-classification)
(slot antiaircraft-system-id)
(slot unit-name)
(slot vertical-engagement)
(slot horizontal-engagement))

Deftemplate: threat-capability

Figure 73. Jess Deftemplate: Threat-Capability.

Assert deftempates to Jess Working Memory. Now that we have

our deftemplates designed, they are now ready to be asserted to working memory. To do

this from the command line we simply copy the deftemplates from the text editor directly

to the command line. Because Jess does not allow invalid syntax to be asserted to

working memory, when we assert our deftemplates we should receive a TRUE return

message from Jess. Figure 74 is a screen capture of asserting both the unit-information

and the threat-capability deftemplates to Jess working memory.

226

Figure 74. Assertion of Deftemplates to Working Memory.

Instantiate the Data Structures By Asserting the Facts. Our data

structures are now in working memory ready to be instantiated with facts. Since the unit-

information facts will be used to replicate the data stream we will assert them one at a

time in order to view the activations and firing of rules. The background threat-capability

facts can be asserted in bulk by defining the facts in a deffacts construct, or a named

grouping of facts, and then invoking the (reset) command. Until the (reset)

command is invoked, the deffacts, while resident in working memory are not yet asserted.

Since our background facts are about threat-capabilities, we will name our deffacts

construct threat-capability-facts. Note that our deffacts construct contains only the

entities described by the data structures as validated by Jess. This note will also apply

to rules as we will discuss in the next section. Any deviation will result in an error

message from Jess. Therefore, facts must be asserted after the data structures, or

deftemplates before deffacts. Figure 75 illustrates the threat-capability-facts as they are

asserted into Jess working memory.

■ Command Prompt - Java jess.Main
ess? <watch all?
RUE
less> <def tenplate unit-info mat ion

"Infornation fron REPEfiT Message"
<slot nane <default UNKNOUN>>
<slot latitude <default 0>>
<slot longitude <default 0>>
<slot unit-size <default UNKNOUN>>>

less> <deftenplate threat-capability
"Threat capabilites sinilar to what an order of battle file will contain

p

<slot arnanent-classification>
<slot antiaircraft-systeii-id>
<slot unit-nane >
<slot uertical-engageiient>
<slot horizontal-engageiient>>

227

Deffacts accepted
into working

memory

Deffacts asserted
by (reset)
command

Figure 75. Assertion of Deffacts to Jess Working Memory.

Establish and Assert the Rules. Since we have previously

discussed the simple anatomy of a Jess rule from our discussion above (Figure 69), we

have established adequate background knowledge to design and establish the rules for our

Rule Based System. The first rule we will assert to our system is the rule we used in

Figure 69 to illustrate the components of a rule. The match-unit capability rule attempts

to find a match between the name slot of unit-information as represented by variable ?n

and the unit-name slot in the threat-capability deffacts. If the match is successful, the

RHS of the rule prints a message to the terminal/command line that the value of ?n=

Match and the Vertical and Horizontal Engagement Ranges (?v and ?h) should also be

retrieved from the matching unit in the threat-capability deffacts and the values printed to

the terminal. Our second rule, the unit-name-nomatch rule is very similar in construct to

our first rule except that it employs logical negation (NOT) to the LHS. By applying the

NOT to the LHS of the rule the system will identify the names of all facts asserted that do

not match the unit-name of any of our background facts. The RHS of the rule simply

prints messages to the terminal warning the reader of “no match” and recommending a

course of action to remedy the situation. Figure 76 illustrates the two rules as they are

asserted into working memory.

228

Implements
Logical

Negation
(NOT)

Rule 1

Rule 2

Positive
match

Figure 76. Jess Rules Asserted.

Assert the Facts from the Data Stream. Now that the data

structures (deftemplates), background facts (deffacts) and the rules (defrules) are asserted

to Jess working memory, the conditions are set for Jess to run our example. To

execute our example, we must assert the facts representing the data stream. Since we

already asserted the data structure (deftemplate) for these facts we have a reasonable idea

of what those facts might look like. Since these facts will be the mechanism

activating/triggering our rules, we will assert them in isolation to observe the behavior of

Jess. To assert a fact simply preface the fact with the (assert) command and barring

syntax errors, it will assert to working memory. Before we assert the rules and

demonstrate the functionality of Jess, let us look at the facts we will assert in order to

pre-identify for the purposes of illustration which facts will activate which rule. Figure

77 identifies the actions for each specific rule.

229

(assert (unit-information (name C3ADA)
(latitude 33.2808)
(longitude 117.3754)
(unit-size Battalion)))

(assert (unit-information (name UNKNOWN)
(latitude 34.2808)
(longitude 116.3754)
(unit-size Battalion)))

(assert (unit-information (name A11ADA)
(latitude 39.2808)
(longitude 118.3754)
(unit-size UNKNOWN)))

(defrule match-unit-capability
(unit-information (name ?n))
(threat-capability (unit-name ?n) (horizontal-engagement ?h)

(vertical-engagement ?v))
=>
(printout t ?n "=Match" crlf)
(printout t "Vertical Engagement Range=" ?v crlf)
(printout t "Horizontal Engagement Range=" ?h crlf))

(deffacts threat-capability-facts "contents of OB File"
(threat-capability (armament-classification AntiAircraftArtillery)

(antiaircraft-system-id ZSU23_4)
(unit-name C3ADA)
(vertical-engagement 5100)
(horizontal-engagement 7000))

(threat-capability (armament-classification SAM)
(antiaircraft-system-id SA4)
(unit-name B31ADA)
(vertical-engagement 3100)
(horizontal-engagement 4000))

(threat-capability (armament-classification SAM)
(antiaircraft-system-id SA2)
(unit-name A11ADA)
(vertical-engagement 8100)
(horizontal-engagement 10000)))

Trigger Facts from
Data Stream

Background Facts
from KB Holdings

Match

Return Values
?n=C3ADA
?v= 5100
?h= 7000

Return Values
?n=A11ADA

?v= 8100
?h= 10000

Match

No
Match

(defrule unit-name-nomatch
(unit-information (name ?n))
(not (threat-capability (unit-name ?n)))
=>
(printout t ?n " =The unit name does not match..." crlf)
(printout t "RECOMMEND EXECUTING COLLECTION REQUEST" crlf)
(printout t "USE SAFE SIDE ESTIMATES of :" crlf)
(printout t "Vertical Engagement Range 2500m" crlf)
(printout t "Horizontal Engagement Range 2500m" crlf))

Activates and Fires
match-unit-capability

Activates and Fires
unit-name-nomatch

Rules

Figure 77. Rule Activations Associated with Facts.

Now that we know what we should expect we can now assert our

trigger facts with some confidence (See Figure 78).

Output to terminal
after (run)

Fire

Matches Fact 4
to Fact 1

Fact 4

Fact 1

threat-capability
(background facts)

unit-information
(data stream facts)

Activate

Figure 78. Activation and Firing of Unit-Match-Capability Rule.

230

As expected, the unit-match-capability rule was fired once the

C3ADA unit-information facts was asserted to working memory because it matched

C3ADA in the threat-capability unit-name in background data. As we can observe in

Figure 78 we are first alerted to the match by the rule activation and then after the rule

fires, the LHS prints to the terminal the unit name along with horizontal and vertical

engagement ranges. This system performed as we expected. Now that we have the

conditions established for the unit-match capability rule to fire, let us look at the unit-

name-nomatch rule as it is activated and fired (See Figure 79).

unit-information
(data stream facts)

threat-capability
(background facts)

NO
MATCHES

Output to terminal
after (run)

Rule
Fired

Figure 79. Activation and Firing of Unit-Name-Nomatch Rule.

Again, as expected, the fact we asserted with a name

(UNKNOWN) did not match any of our unit-names in our background fact holdings. As

such, the unit-name-nomatch was activated and fired returning the desired output to the

terminal.

How Jess works: the Rete Algorithm. As briefly mentioned

above, Jess uses the Rete algorithm to execute fast pattern matching. The Rete works

by constructing a network at runtime within the execution engine by representing the

LHS test as nodes within a network (Friedman-Hill, 2003, 136). Each node (LHS test)

231

can have one (tests one fact) or two inputs (tests across multiple facts) and unlimited

numbers of outputs. As the facts are asserted to working memory they are processed

through these nodes that form the Rete network until reaching the terminal node where

the output is rendered. Once a fact has successfully navigated the nodes of the Rete

network, meaning all the LHS conditions were met, the rules located in the terminal node

may be applied to the facts (Friedman-Hill, 2003, 137). It is important to note the Rete

network is formed in working memory at runtime. By doing this Jess essentially stores

previous pattern matching results and is only required to fully process facts not matching

the activated patterns of the facts previously asserted. In essence, it is as if Jess

executes an If...Then statement, remembering the fact pattern that satisfied the If (LHS)

conditions. The next time the same pattern is met Jess simply recalls the stored

activation record and avoids reprocessing. Jess, therefore, is extremely efficient. To

illustrate an example of the Rete network let us view the network formed from our

working example and illustrate what each node represents. We can view the Rete

network within Jess by invoking the (view) command (See Figure 80).

NOT Test Unit Name in
Unit-Information does not

match Unit-Name from
Threat-Capabilities

Rete Network Constructed by
JESS from Match-Unit to

Capability Example

Root node of
Rete Network

Test fact Class:
Threat-Capability

Test fact Class:
Unit-Information

Left Input Adapter
Connects LHS to

Network Test Unit Name in Unit-
Information does match
Unit-Name from Threat-

Capabilities

No Match
Output

Match Output

Figure 80. Rete Network Formed from Match-Unit-Capability Example.

& Network View E][n][X

1
DD

232

Our example admittedly demonstrated the most basic functionality

of Jess. The real power of Jesscan only be realized when interacting with large

numbers of facts and a multitude of different and complex rules. Implementing Jess in

conjunction with a SWEB application, can, and will likely yield some interesting and

powerful possibilities. Providing Jess has a focused and bounded usage, great

efficiencies and capabilities can be gained when implemented in conjunction with a

SWEB application.

D. KNOWLEDGE BASE DESIGN

The design criteria for a knowledge base are just as open ended and dependent

upon the requirements of the application as any data model, application or program.

There are general design considerations that continually resurface and are important

enough to step through in our discussion about KBs. Much of the design criteria and

considerations follow the patterns of Object Oriented Design. Before beginning our

analysis of KB design criteria let us establish the fact that we are approaching the design

of a KB required to serve a specific domain purpose. We want to differentiate this type

of KB from one that may be used to serve a more general role. The domain oriented KB

will be the variety likely to be encountered in military applications and will be focus for

our design discussion. That said, much as the design criteria of an ontology, the content

of the KB should be defined and populated with only relevant content designed to serve

its purpose (Russel, 1999, 218).

1. Modular Approach

The knowledge base should be designed with modularity in mind. As we shall

see there are advantages to modularity not only in the physical components such as the

separation of the KB from the inference engine, but also in the knowledge stores or

content of the KB. Since KBs can become very complex, the principal of modularity is

essential to facilitate decomposing the KB into smaller parts - each of which may be

debugged, upgraded and performance tuned separately (Booch, 1994, 16). The more

complex a system is the more open it is to complete and total breakdown (Peter, 1986,

153), and we can ill afford to have the brains of our SWEB application cease to function.

It then will be no different than any other web application.

233

2. Knowledge Base/Inference Engine
The modular principles of KB design should ideally separate the inference engine

from the KB when possible (Russell, 1995, 218). This division allows the system to

enjoy a separation of concerns by enabling two critical functions of the KB to be loosely

coupled and independent. The alternative could be a critical dependency in which both

the KB and the inference engine become helplessly inseparable, making debugging,

performance and maintenance more difficult. The modular approach allows the creator

of the KB to focus on building the content and developing the KR, while being less

concerned about how the inference engine will interact with it (Russel, 1995, 218). Of

course, the KB creator must ensure the KR, knowledge architecture and the supporting

data structures are able to be manipulated by the inference procedure with maximum

efficiency.

3. Knowledge Clusters
Now that we have addressed the modularity of the components of the physical KB

let us shift our attention to the KB content to see the potential advantages of making the

content modular112.

Before we launch into this discussion, it must be understood there are many

philosophies regarding the aggregation and dis-aggregation of KB content and supporting

data structures. Each philosophy has strengths and weaknesses and is largely dependent

on the application’s requirements. Along with the aggregation philosophies there are also

philosophies that have emerged on the storage of knowledge in large generic receptacles

versus smaller, more numerous and specific knowledge stores. Again, each philosophy

has particular merits and we deliberately chose not to address these issues here. For our

KB discussion, as we stated above, we will focus on specific knowledge, stated as

generally as possible, and its supporting data stores residing on a network designed to

support the decision maker in a specific problem space. The generic and more general

KBs would likely have slightly different design criteria and is beyond our scope. Later,

when we discuss a practical application we will show how a generic data source can be

112 See Wachmuth and Gangler. Knowledge Packets and Knowledge Packet Structures (1991).
information

234

enabled and leveraged in conjunction with more specific knowledge content to augment a

SWEB application. With that focus in mind, let us proceed with our discussion on

knowledge modularity.

To reduce complexity within the knowledge content of the KB, the ontology and

supporting data structures must be designed with modularity in mind. By organizing the

knowledge content into small clusters that support some aspect of the domain, they can

be developed independently and linked to other supporting knowledge or data structures

as required (Russel, 1999, 218). To achieve this goal a functional decomposition of the

problem space can be accomplished to breakdown the content to its atomic state and to

the minimum acceptable dis-aggregation that can be tolerated and still solve a portion of

the problem space. This is the idea of task-specific problem solving (Wachsmuth, 1990,

1). Wachsmuth and Gangler develop this idea and formalize it calling it Domain

Oriented Knowledge Structuring (DOKS). The DOKS principals structure the

knowledge content into knowledge packages or modules which are essentially small,

autonomous KBs oriented to solving specific problems (Wachsmuth, 1991, 2). We will

discuss DOKS and the concept of structuring knowledge by module in its own section as

we feel it is an important and worthy concept.

4. Loosely Coupled
In keeping with the DOKS concepts introduced in the previous chapter let us look

at how KB content functions and interacts with other content by maintaining the loosely

coupled nature it was designed for.

As we stated, the KBs of the SWEB will be dependent upon the network. As such

the content may be discovered, retrieved and stored on demand via the network. With

this being the case, the ontologies that represent the content and their relationships within

the KB must be flexible enough to function in an information/knowledge on demand

environment. As we asserted earlier, the KBs of the SWEB, while not required to

possess all content as their ES predecessors, they must at least store the

foundational/background knowledge required to support and augment the

information/knowledge gained from the network. To function in this capacity the KB

must enable its foundational/background propositions to support multiple knowledge

235

modules (Wachmuth, 1991, 3). The module concept can function in this capacity

because the modules were designed to be autonomous, but linkable. In OO terms this is

called loosely coupled. To illustrate this point, understand that the modules themselves

may contain knowledge usable by another module that can be linked by any number of

modules requiring that knowledge. Within the KB a “small networked world” is being

formed as modules continue to link.

The repeated linking of modules internal and external to the KB also creates

redundancy within the KB itself. Multiple links are established to relevant knowledge

through adjacent terms and concepts, reuse and extensions of ontologies. The more links

occurring the less prone the knowledge structures are to catastrophic failure if the

network or software fails (Kurzweil, 1999, 288). A redundancy as well as a necessary

functionality is being built into to the KB link by link.

The modules can assist this linking process by communicating their usability

conditions through a Knowledge Module Ontology. When their usability conditions are

not met the module will be partitioned or invisible to the ASKing procedure. Suffice it to

say that the SWEB requires this effect to occur on a large scale for it to reach its full

potential (See Figure 81).

Knowledge
Module 1

(Most General)
Specific
KMOD 3

Most
Specific
KMOD 4

Specific
KMOD 2

KMOD 2 Invisible to KMOD 3 and 4
and vice versa

Figure 81. Example Knowledge Module Visibility (After: Wachmuth, 1991).

236

5. Network
We cannot emphasize enough how important the network is to the KB of a given

SWEB application. Because of the network’s central role the function of the KB will

undoubtedly be adversely impacted if the network connection to the Wide Web fails.

Planning for this failure, several network specific design choices for the KB must be

considered for the KBs of the SWEB to function.

Since much of the knowledge required by SWEB applications will reside in the

network, there is no need for the KB to possess and store the required source in total. In

fact one of the economies gained by a networked environment is the availability of usable

resources without the cost of ownership (Parsons, 2003, 5). The KB and its proxies must

be designed to access these external sources routinely and provide a repository for a local

cache of that data, information or knowledge for further processing. The local cache will

also serve as a backup to support KB functions dependent on the networked source if the

network (connection) goes down. While the cache will not be as current as the

networked source113 it will still provide the KB with a workable contingency in the event

of a network failure.

These local caches within the KB are where the inference, ASKing functions and

any other conversion or manipulation of the original resource that is required occurs (See

Figure 82). All processing now conducted on the cached content is independent of the

original networked source. Transformations of the content stored in the local cache can

be executed to turn content into instances of the ontology and propositions of the KB,

while manipulating only the content contained in a copy of the cache. By executing all

transformations and manipulations on a copy of the cache, the original cache can be used

to track the pedigree or traceability of the content from the original sources.

In the Distributed Computing and Data Sources chapters, we discussed many of

the details involving how external sources are drawn into the KB and transformed as

required to support the operations of the application. This is a critical function of the KB

and the requirements for a reliable interface to the network must be thoroughly

considered.

113 The currency of the cache is dependent upon how often snapshots of the original source are taken.

237

Meta-Ontology
Upper-Level Meta-

Ontology

PR Domain
Articulation
OntologyOntology

(OWL)

Data Structure
Ontology

(OWL)

Rule Ontology
(OWL)

Lower-Level Articulation Ontology

Reports
Ontology

Organization Threat
Ontology

PR Action
Ontology

Area of
Interest

Ontology
(OWL)

Airframe
Capability

Route
Knowledge

Module

NOE Air
Tactical SOF Threat

Instances of
an Ontology

Modular
Networks

of
Ontologies

Knowledge
Module 1

(Most General)
Specific
KMOD 3

Most
Specific
KMOD 4

Specific
KMOD 2

Modular
Knowledge

Inference
Mechanism

(External to KB)

Network
(Data/Information/
Knowledge Stream

Knowledge Base

Local
Cache

Local
Cache

Local
Cache

Rule Engine
(External to

KB)

External
Inference
Engine

External Rule
Engine

Figure 82. SWEB Network Knowledge Base Architecture.

E. KNOWLEDGE BASE ORGANIZATION

The need for large scale KBs is unavoidable for complex problem sets

(Wachmuth, 1991, 5). As one might expect the more complex the problem space the

potentially greater the demand for large knowledge stores and the supporting data sources

to understand the problem space. As we alluded to above, the principles of Domain

Oriented Knowledge Structuring (DOKS) were developed to model knowledge to solve

complex problems. In fact Wachmuth and Gangler took the DOKS concepts and applied

it to one of the most complex problems we have yet to solve, Natural Language

Processing (NLP). They tried to develop a text understanding system supported by a

large KB containing their semantic background. If the DOKS concepts can work in

problem spaces such as NLP, let us see how it scales to the complex problems of the

Military Domain.

238

1. Domain Oriented Knowledge Structuring (DOKS)

a. Knowledge Modules
We mentioned above that DOKS orients knowledge to a problem space or

sub-problem space of a domain. The knowledge oriented to the domain is organized into

Knowledge Packets or Knowledge Modules based on their function. Throughout this

work we will refer to them as Knowledge Modules, Modules or K-Mods. A K-Mod is a

component of the KB made up of Knowledge Elements. We can equate Knowledge

Elements to the facts of the KB and K-Mods to the sentences or propositions that facts

comprise. Collections of Knowledge Elements relevant to a given problem space belong

to a K-Mod. If we dissect a K-Mod we will find a set of Knowledge Elements and their

propositions based on an understanding of the problem space in which it is oriented

(Wachmuth, 1991, 6). K-Mods can also contain other, more specific K-Mods. A K-Mod

as we mentioned above is a small, fully functioning autonomous KB that can solve a

domain specific problem. A KB can contain many K-Mods. One of the challenges to a

KB with many K-Mods is selecting the right K-Mod for the right purpose.

b. Knowledge Packet Structures
Knowledge Packet structures are the Meta-Ontology(ies) that establish the

usability conditions for determining what K-Mod is suited to handle what problem. The

usability conditions contained within the K-Mod also assert the rules to be used by the

inference procedure. The Knowledge Packet Structures serve as a point of entry to the K-

Mods and may be a likely role for an agent to occupy. When a specific K-Mod is called

by the KB, other K-Mods that have no applicability to the operation are made invisible by

the Knowledge Packet Structure, thus restricting operations to the relevant K-Mods. This

concept is called locality of reasoning. This aspect of DOKS replicates the manner in

which humans use knowledge. The Knowledge Packet Structure serves as the connector

and recalls the grouped knowledge found in the one or more relevant K-Mods that meets

the usability conditions for a given situation and partitions the K-Mods that do not (See

Figure 83). The visible K-Mods are normally small enough to be tractable to human

users and lend themselves to easier maintenance by subscribing to a modular, loosely

coupled design.

239

Spider Route
KMOD

Threat Forces
KMOD

SOF Threat
Forces
KMOD
SOF Threat

ADA
KMOD

Airframe
Capability

KMOD

AI (Terrain/
Environ)
KMOD

objectified environ

Partitions

Figure 83. Spider Route Knowledge Module with Partitions.

F. SUMMARY

The Knowledge Bases (KBs) of SWEB applications, much like their predecessors

in Expert Systems (ES), will serve an important function. But, unlike their ES

predecessors, the KBs of the SWEB leverage the connectedness of the vast networks of

the World Wide Web (WWW) to return previously unthinkable efficiencies. The WWW

will obviate the requirements for a KB to possess, maintain and store its knowledge

sources to replicate expert human decision making. Instead, information will be

discovered, retrieved, and enabled through deep interoperability, shared meaning,

distributed computing and a network of data/information/knowledge sources. With this

the KBs of the SWEB will provide data, information and knowledge on demand and

supply it to KB for additional processing such as reasoning. Only local caches or mirrors

will be required to safeguard against network failures and non-availability of sources.

The KB of the SWEB must be designed so its physical architecture and knowledge/data

structures are modular and loosely coupled to mitigate complexity, foster reuse and

extensibility, and expose its knowledge to other applications. The experts generally agree

that an ontology plus instances is a KB, but we would argue the KB of the SWEB

requires the addition of a network to the definition. The presently largely untapped

knowledge richness of the networks of the WWW with the addition of powerful

inferencing mechanisms when they arrive, combined with widespread OWL

240

conceptualized domains, will combine to give us deep meaning and unprecedented

functionality. This will finally give us the first real taste of the value the SWEB will

contribute to assisting our military forces in gaining the knowledge superiority they

require.

241

VIII. CONCLUSION

A. CONCLUSION

1. Refined Hypothesis
At the onset of this research effort we formulated two potential hypotheses to

ground our assumptions and anchor our analysis. Both hypotheses in their original form

remain valid, but as a result of our research we formulated a new, more insightful

hypothesis we term Hypothesis C. The refined hypothesis follows:

a. Hypothesis C
The transition to the SWEB will be gradual, paced by the progression of

the development and maturity of its building block technologies such as the Web

Ontology Language (OWL), Agents, SWEB Services as well as Integrated Development

Environments (Tools) to produce and validate such technologies. As the technologies

mature applications will be implemented and a gradual proliferation will occur.

Efficiencies and benefits of these partial implementations will be realizable and serve as

the impetus to drive the technologies lagging in development and maturity. The value of

the SWEB will then begin to be created. This proliferation and deployment of SWEB

technologies will appear linear in nature and will continue to appear linear until adequate

numbers of adopters connect and link their applications. The military and government

domains will likely be early adopters and act as catalysts to the widespread adoption of

the SWEB. At a point (Tipping Point) the adoption of the SWEB will diverge from a

linear growth pattern to a non-linear, exponential growth rate until the growth reaches

equilibrium or saturation. At equilibrium the SWEB will assume the commodity stature

of the current WWW and the adoption of the SWEB will be complete. By necessity,

much like the current web, industry, military and government agencies must adopt to

communicate and remain interoperable.

B. RESEARCH QUESTIONS

To support our hypothesis we crafted our analysis around three overarching

research questions. We arrived at the overarching research questions by combining the

242

more focused research questions answered in the individual chapters. Our overarching

research questions can be found in Table 12. To reveal our conclusions to these

questions we will refine our Military Decision Making Causal Loop Diagram (See Figure

84) from the Introduction and apply SWEB Technologies at the leverage points (See

Figure 85).

Overarching Research Questions

How can SWEB Technologies be applied (Combat Multiplier) in the
Military Domain?

What is the value added for SWEB technologies in the Military Domain?

What are the limitations/potential adoption inhibitors of SWEB
technologies in the Military Domain?

Table 12. Overarching Research Questions.

C. MODEL
To review, Figure 84 depicts our model from the introduction. The potential

leverage points we identified with the red circles will be the medium by which we will

reveal our conclusions. We should note while we expect efficiencies to be gained by

applying SWEB technologies, the technologies themselves are not expected to mitigate

the inefficiencies (delays/bottlenecks) entirely. Additional efficiencies must be recouped

by reengineering the processes and instituting organizational, procedural and cultural

changes in the human users.

243

Warfare

Uncertainty
+

Intelligence
Collection

Assets

Gross
Collection

Rate

+

+

-

Average
Collection

Asset
Efficiency

IntelligenceFailure
Fraction

-

Gross
Data

Collection

+

+
+

Noise
Coefficient

Analysis
Backlog+

Gross
Analysis

Rate

-

of Analysts

AverageHuman
Rate of Analysis

+ +

Intelligence
Yield(Net
Analysis)

+

Intelligence
Q/C

+

Actionable
Intelligence

Background
Intelligence

+
+

Decision
Rate +

-

Perceived
Value

Density

B

Intelligence
Transfer

Rate

-

Dispersion
Factor

Pressure For
Intelligence

Yield

Error
Fraction

-

-

+

-

Dangerous
SHORT-CUT

Delay

Delay

Delay

Maximum
Human

Rate of Analysis

+

Goal:
Speed

and
Accuracy

Equations and Substitutions

(Background
Knowledge)

(New
Knowledge)

(Knowledge
Yield)

(Knowledge
Transfer)

(Interpretation)

(Interpretation)

(Data)

Analysis= Interpretation

Knowledge=Intelligence

Interpretation+ Data= Information

Information+ Old Knowledge= New
Knowledge

(Density)

Completed
Analysis-

LP1

LP2

LP3

LP4

LP5

LP = Leverage
Point

-

R

LP6

Decision
Cycle

Figure 84. Military Decision Making CLD and Potential Leverage Points.

1. Analysis of Refined Model with Enabled Leverage Points

a. Leverage Point 1 (LP1) Apply KR and Domain Theory
Leverage Point 1 was identified between the interaction of Data Collection

Rate and Gross Data Collection. The delay depicts the Collection Delay originating from

the collection of undescribed, potentially unorganized data without meaning from the

collection assets. The implementation of an SWEB Application begins by enabling the

data source through rigorous Knowledge Representation (KR) derived from a domain

ontology. To interject a degree of intelligence and preprocessing at the sensor by

embedding meaning in the data upon collection will make data self describing. If the

collected data is now self describing, fewer resources are required to pre-sort and

disseminate the data to the analyst(s) responsible for interpreting the data. The data can

describe its own machine interpretable content. Additionally, the Noise Coefficient

which we described as interjecting valueless background clutter into Gross Data

244

Collection can be mitigated because the noise will not possess a self describing aspect

and can be discarded before it enters the system. This will reduce the system load at the

point of entry, effectively shortening the delay.

b. Leverage Point 2 (LP2) Apply Machine Reasoning and Rules
Leverage Point 2 is the dynamics resulting from the Perceived Value

Density of the Decision Maker and the Pressure for Intelligence Yield imposed by the

system as a consequence. This pressure dynamic will always exist to a degree, but

pressure can only be exerted on the human analyst. By introducing enabled data from the

point of entry, machines can now assist humans in the interpretation or analysis process.

The Pressure for Intelligence Yield can now be shared by machines and humans, but we

expect the pressure to be less severe since the machines will work at a higher rate of

analysis (classifying, comparing, and correlating) as compared to a human analyst. The

human will now have some of the menial analysis completed by a machine and be able to

focus on improving the analytical quality by leveraging human cognitive skills, not yet

reproducible by machines. While unable to remove all temptations to take the dangerous

shortcut and admit raw data from the Gross Data Collection into Actionable Intelligence,

it will substantially reduce the temptation. This will mitigate the negative effect on

Actionable Intelligence and not slow the Net Decision Rate resulting from the pollution

of Actionable Intelligence by raw unevaluated data.

c. Leverage Point 3 (LP3) Apply Agents and Machines

LP3 is targeted at the Analysis Delay largely caused by quantity of data

versus the Maximum Human Rate of Analysis (MHRA). The MHRA is a result of the

human cognitive limits. The introduction of KR-enabled data, able to be interpreted by

machines and agents, will now offload some of the menial analysis tasks from the human

and allow the human to focus on more advanced human reasoning increasing the quality

of the analysis. The personnel who once filled the roles the machines now occupy can be

reallocated to quality control and afforded the ability to apply deeper, cognitive analysis

to the materials.

245

d. Leverage Point 4 (LP4) Apply Computer Reasoning and Rules
LP 4 is targeted at a potential unanticipated side effect from MHRA and

the effects of Pressure for Intelligence Yield. The more rapidly a human analyzes

material the greater the fatigue factor. This however this is not true of machines. The

agent and machines assigned to assist humans with analysis have a higher degree of

endurance and in fact cannot be fatigued. Therefore, if fatigue does not occur, the Error

Fraction caused by fatigue and workload is largely removed from the system. Humans

can now be employed in quality control roles vice employed in the repetitive, mundane

roles better suited to a machine. The most important point from LP4 is the fact that the

human can analyze at a certain rate, for a certain amount of time, but machines and

software agents are not susceptible to this limitation.

e. Leverage Point 5 (LP5) Apply Agents and Services
LP5 focuses on the transfer delay in the Intelligence Transfer Rate

between Intelligence Yield and Actionable Intelligence. The delay is caused by latency

in the network, network traffic (bottlenecks/collisions) and network availability. By

transferring self describing content through agents and SWEB Services will allow more

precise distribution and delivery by incorporating a publication and subscription system.

This will effectively reduce the intrinsic Dispersion Factor of knowledge, in this case our

surrogate Intelligence, by transferring content that is self describing as part of a service or

agent system. Rigorous KR will mitigate the dispersion factor before it can affect

Intelligence Transfer Rate to its intended recipient as the intended recipients now have

agents capable watching for changes in content their decision maker is interested in at the

point of entry, countering the dispersion factor.

f. Leverage Point 6 (LP6) Apply KB and Knowledge Construction
LP 6 is found in the added value of relevant, usable and available

Background Intelligence (Background Knowledge) to create new Actionable Intelligence

(New Knowledge). By integrating data driven inference and reasoning, background

knowledge can be brought to a new level of quality making the New Knowledge

Equation: Old Knowledge + Information = New Knowledge execute more efficiently by

providing higher quality, machine interpretable background knowledge on demand.

246

Warfare

Uncertainty
+

Intelligence
Collection

Assets

Gross
Collection

Rate

+

+

-

Average
Collection

Asset
Efficiency

IntelligenceFailure
Fraction

-

Gross
Data

Collection

+

+
+

Noise
Coefficient

Analysis
Backlog+

Gross
Analysis

Rate

-

of Analysts
Decrease/Move to Q/C

Average
Human
Rate of

Analysis

+ +
Intelligence

Yield(Net Analysis)

+

Intelligence
Q/C

+

Actionable
Intelligence

Background
Intelligence

+
+

Decision
Rate +

-

Perceived
Value

Density

B

Intelligence
Transfer

Rate

-

Dispersion
Factor

Pressure For
Intelligence

Yield

Error
Fraction

-

-

+

-

Dangerous
SHORT-CUT

Delay

Delay

Delay

Maximum
Human

Rate of Analysis

+

(Background
Knowledge)

(New
Knowledge)

(Knowledge
Yield)

(Knowledge
Transfer)

(Interpretation)

(Interpretation)

(Data)

(Increase in
Value Density)

Completed
Analysis-

LP1

LP2

LP3

LP4

LP5

-

R

LP6

Decision
Cycle

Implement Knowledge
Representation (KR) enabling

data close to collection
EMBEDS meaning into the

data making it SELF-
DESCRIBING

LP
=Enabled
Leverage

Point

Increase the amount of KR
enabled data = Quicker to

Point of Interpretation

***Preparation Costs for
KR/KA Efforts are LESS

THAN
Costs for NOT
Semantically
Transforming

Maximum
Computer

Rate of Analysis

+

Av erage
Computer

Rate of
Analysis

+

Human Limits:
Not critical

factor.
Computer

shares the load Analysis Delay shortened by the
ability of computers to assist
with analysis/interpretation +

free for more Q/C

Greater to equal
yield/faster

Reallocated
analysts doing
more cognitive

analysis
(TRUST)

Mitigated by Self
Describing
Intelligence/

Semantic Web
Services

(More precise
searched and

improved
distribution through

subscription and
publication of

services

Apply Agents /
Semantic Web

Services/
KR

Transfer Delay:
Intelligence is Self

Describing +
Automated
Discovery

KB benefits from KR
enabled data sources.

Common meaning
enables automated

application/acquisition
of relevant background

kno wledge

Goal:
Intelligence at

the Right Place
at the Right

Time

Pressure to
Shortcut the
Process is
mitigated

Figure 85. Military Decision Making CLD with Enabled Leverage Points.

2. Overall Model
As demonstrated from a review of the refined model many of the potential

leverage points identified in the model we presented in the Introduction are suited to

application of SWEB Technologies to gain speed, accuracy and precision. While we

know the bottlenecks and delays can be mitigated to a level, we further understand

without changes in the decision making process, people and leadership the efficiencies

cannot be gained. The adoption of the SWEB will be realized and soon machines will

prove to be of greater value to war fighting. When machines are able to interpret the

content they process and further assist humans by classifying, correlating and comparing

content before the human analysis begins, their potential will be further realized. This

off-loading, or delegation, will produce faster sensor-to-shooter times and assist in

achieving the speed required to achieve victory on any battlefield.

247

D. FUTURE WORK

1. Integration of All the Components
While all components can operate separately, the real power of the SWEB will

not be realized until all are operating seamlessly in concert. The integration of all the

components of the SWEB is the first demonstration of the value the SWEB is capable of

providing. Our research efforts ended with independently functioning pieces; an

integrated application is left for future research efforts. See Figure 86 for a proposed

Generic Semantic Web Application Architecture Pattern illustrating likely integration

requirements.

 Data
 Stream

Data
Source

1

Data
Source

2

Data
Source

3

WWW

XML preferred

Data Stream
Enabled

Process

Classification
Application

(FaCT
Agents)

Classify/
Subsumption

Check, Correlate,
Compare

Data Driven
Reasoning
(On the Fly)

Process

Ontology +
Instances
TELL/ASK

KB Storage/
Reasoning
(Deliberate)

Process

Knowledge

Base

Data
Cache/
Mirror

Rule Based
Reasoning

(JESS+FuzzyJ)
RuleBase

Inference
Engine

(When to apply
Rules)

JTP

Learning/Adjust
FuzzyJ

Probablities
and agenda
Probabilities

Rule Agenda
Set

Sub-Process

Supplies
Provenance

and Pedigree
For Reasoning

Proofs

KB View

Reasoning
View

Rule Base
View

TELL/
ASK

Fire
Rules/QC

ADD/DEL/MOD
Rules

Application Views

Application
View

Agent
Control View

ParamsVIEW
S

Application Views
User Interface

Presentation

Process

USER

GENERIC SEMANTIC WEB APPLICATION
ARCHITECTURE PATTERN

Discovery StoreGeneration UsageTransfer Maintain/
Evaluate

Reuse

Knowledge Generation Life Cycle

Alerts, Implications,
Recommendations

Interface Agents

Process

Seek/Listen,
Broker, Handle

Information
Agents

(Keepers)

Process

Adaptive,
Autonomous

Intelligent
Agents

Process

Communicate,
Coordinate

Collaborative
Agents

Process

Agent(s)

Legend

Figure 86. Integrated Semantic Web Architecture (Generic).

248

2. Trust/Security
Unquestionably, trust and security are critical to the implementation of the SWEB

within the military domain. Due to the complex nature and detail required to properly

address these issues they were intentionally left for future research.

3. Transition Guidance
The various functioning pieces are generically grouped under the ArchAngel

project discussed in the Agents chapter. Code for ArchAngel is slated to be deployed on

a server and its supporting infrastructure at NPS. The server will be controlled and

administered by Mr. Doug Horner of the Expeditionary Pervasive Sensing (EPS) research

group. The current thread will build upon a Personnel Recovery (PR) scenario with

emphasis on dynamic route planning. The design and development of the ontologies and

the external rule based system is underway by a contractor under the guidance of Mr.

Horner. Anyone interested in participating in this effort is encouraged to contact Mr.

Horner.

249

APPENDIX. GLOSSARY

Term Description
.NET - Set of Microsoft technologies designed for developing

interconnected applications.
- Similar to J2EE’s purpose

AA - Antiaircraft
AI - Artificial Intelligence

API - Application Programming Interface
Backward
Chaining

- Given a goal state, a system that first checks to see if the goal
matches the initial facts given, if not the system looks for
rules whose conclusion matches the goal.

- The system looks to support the goal with known
facts/concepts from the KB

Binary Predicate - Questions that have two arguments
- Such as properties

BML - Battlefield Management Language
Cφ - Common Knowledge

Classes - Abstraction mechanism for grouping resources with similar
characteristics

- Every OWL class is associated with a set of individuals or its
class extension

CLD - Causal Loop Diagram
Closed World
Assumption

- A fact is false unless it has been explicitly stated as true

CoABS - Control of Agent Based Systems
Conceptualizatio

n
- The formal structure of reality as perceived, organized and

described
- Includes the vocabulary and actual occurrences of a specific

situation
COP - Common Operational Picture
Dφ - Distributed Knowledge

DARPA - Defense Advanced Research Projects Agency
DDL - Data Definition Language
DL - Description Logic

DoD - Department of Defense
DOKS - Domain Oriented Knowledge Structuring
DOM - Document Object Model.

- An interface that allows programs and scripts to dynamically
access and update the content, structure and style of
documents.

- Document can be further processed and the results of that
processing can be incorporated back into the presented page.

- Reads entire document into memory.

250

Term Description
- Provides random access

Domain
(x)

- The set of objects that may serve as inputs to a function
- All possible values that can be inserted into a column is the

domain on an attribute
Domain/

Universe of
Discourse

- Set of entities we want to express/represent knowledge about
- Bounded area on interest

ER Diagram - Entity Relationship Diagram
ES - Expert System

Extrinsic
Properties

- Not forming and essential part of an entity
- Such as the name of a weapon system or the unit it belongs to

FA - Feasibility Assessment
Facets - Slot constraints

- Value types
- Allowable values

FaCT Reasoner - Fast Classifications of Terminologies
Forward
Chaining

- System begins with a fact assertion and attempts to establish
conclusions based on the new facts

- Data driven/Data Directed
- Forward chaining slowly builds up a general picture of the

problem space as new facts are asserted
Frame - The information relevant to a particular concept stored in a

single complex entity
- OWL class axiom

GH5 - Generic Hub 5
- NATO Data model to facilitate data sharing

IFF - Information Flow Framework
Instances - Concepts denoting single items rather than sets or categories

- Individuals in a class extension are called instances
Intrinsic

Properties
- Situated or belonging solely to; forms an essential part of an

entity
- Such as the engagement range of a weapon system

IT - Information Technology
J2EE - The Java 2 Platform, Enterprise Edition (J2EE)

- Sun Microsystems’ standard for developing multi-tier
enterprise applications.

- J2EE is a Java-based technology stack, built on top of J2SE
(Java 2 Platform, Standard Edition)

- Primarily targeted to server-side applications
Jess - Java Expert System Shell
KB - Knowledge Base
KR - Knowledge Representation

KVA - Knowledge Value Added
Lexical

(Lexicon)
- Of or related to words or the vocabulary of a language as

distinguished from its grammar and construction

251

Term Description
LHS - Left Hand Side
LP - Leverage Point

MHRA - Maximum Human Rate of Analysis
Monotonic - New information cannot retract/counter previous information
Ontology - Explicit, formal specifications of the concepts in the domain

and the relationships among them
OOB - Order of Battle

OODA Loop - The natural human decision making cycle
- Observe, Orient, Decide, Act
- Invented by COL (Ret) Boyd

OOP - Object Oriented Programming
OWL - Web Ontology Language

- Designed for use by applications that need to process the
content of information instead of just presenting information
to humans

- Facilitates greater machine readability of Web content than
that supported by XML, RDF, and RDF Schema by providing
additional vocabulary along with a formal semantics.

- Has three increasingly-expressive sub-languages: OWL Lite,
OWL DL, and OWL Full.

PSI - Published Subject Indicator
- XTM community concept also applicable to OWL meaning an

authoritative source
Range

(y)
- The set of objects that may serve as the value of a function
- All possible values that may be inserted into a tuple or row
- Allowed classes for slots

RDF - Resource Description Framework
- Language for representing information about resources in the

World Wide Web.
- Particularly intended for representing metadata about Web

resources, such as the title, author, and modification date of a
Web page, copyright and licensing information about a Web
document, or the availability schedule for some shared
resource.

- OWL is built on top of the RDF recommendation
Reification - To regard something abstract as a material concrete thing

RHS - Right Hand Side
SAX - Simple API for XML

- Similar to DOM, but “looks through” each node of the XML
document based on event stream.

- Does not load entire document into memory
- Does not provide random access

SD - Systems Dynamics
Semantic
Network

- A system that represents objects as nodes of a graph with
taxonomic structure

252

Term Description
- Subclass and instance relations may be used to derive new

information not explicitly stated (subsumption
check/classification)

- Allows for efficient inheritance
Slots - Important properties

- Relationships, attributes, procedures
SOAP - Simple Object Access Protocol

Subsumption - Classifying an entity/concept under a more general category
- A result of this classification is that the entity inherits the

attributes of the more general category
SVG - Scaleable Vector Graphics

SWEB - Semantic Web
Unary Predicates - Questions that have one argument

- Such as a class
URI - Uniform Resource Identifier
W3C - World Wide Web Consortium

- Develops interoperable technologies (specifications,
guidelines, software, and tools).

- A forum for information, commerce, communication, and
collective understanding.

- Open standards organization whose scope is the World Wide
Web.

WSDL - Web Services Definition language
WWW - World Wide Web

XHTML™ - Extensible Hyper-Text Markup Language
- A family of current and future document types and modules

that reproduce, subset, and extend HTML, reformulated in
XML.

- Family document types are all XML-based, and ultimately are
designed to work in conjunction with XML-based user agents.

- Successor of HTML
- A series of specifications has been developed for XHTML.
- It is well-formed XML that uses the HTML tag set.

XML:DB - Initiative to create and implement standards for interfacing
with and interacting with XML databases

- Functionally, comparable to JDBC and ODBC for relational
database connectivity

XPath - A W3C Recommendation that describes a syntax for selecting
a set of nodes from an XML document. (Hunter, 2001, 619)

- Provides basic facilities for manipulating strings, numbers and
booleans.

- Uses compact, non-XML syntax for use of XPath within URIs
and XML attribute values.

- Operates on the abstract, logical structure of an XML
document, rather than its surface syntax.

253

Term Description
- Gets its name from its use of a path notation as in URLs for

navigating through hierarchical structure of an XML
document.

- In addition to use for addressing, is also designed so that it has
a natural subset that can be used for matching (testing whether
or not a node matches a pattern); this use of XPath is
described in XSLT.

XQuery - XML Query Language
- Designed to provide features for retrieving and interpreting

information from XML sources, using concise and easily
understood queries.

- Flexible enough to query a broad spectrum of XML
information sources, including both databases and documents

- Derived from an XML query language called Quilt, which in
turn borrowed features from several other languages,
including XPath 1.0 and SQL among others.

XSL - Extensible Stylesheet Language
- Language for expressing stylesheets
- It consists of three parts: XSL Transformations (XSLT): a

language for transforming XML documents, the XML Path
Language (XPath), and XSL Formatting Objects: an XML
vocabulary for specifying formatting semantics

- An XSL stylesheet specifies the presentation of a class of
XML documents by describing how an instance of the class is
transformed into an XML document that uses the formatting
vocabulary

254

THIS PAGE INTENTIONALLY LEFT BLANK

255

LIST OF REFERENCES

Adams, Thomas K. FutureWarfare and the Decline of Human Decision-Making (2001).
Parameters, Winter 2001-02, pp. 57-71.

Alberts, D. S., Garstka, J. J., Stein, F. P. (1999). Network Centric Warfare: Developing
and Leveraging Information Superiority. DoD C4ISR Cooperative Research Program.

Ahmed, K., Ancha, S., Cioroianu, A., Cousins, J., Crosbie, J., Davies, J., Gabhart, K.,
Gould, S., Laddad, R., Li, S., Macmillan, B., Rivers-Moore, D., Skubal, J., Watson, K.,
Williams, S., Hart, J. (2001). Professional Java XML. Birmingham, U.K: Wrox Press
Ltd.

Ankolenkar, A., Burstein, M., Paolucci, M., Payne, T., Sycara, K., Lassila, O., McIlraith,
S., Cao Son, T., Zeng, H., Hobbs, J., Martin, D., Narayanan, S., and McDermott, D.
DAML-S: Semantic Markup for Web Services. Report Dated 5 May 2003.

Arquilla, J., Ronfeldt, D. (1997). In Athena’s Camp. RAND.

Ayala, D., Browne, C., Chopra, V., Sarang, P., Apshankar, K., McAllister, T. (2002).
Professional Open Source Web Services. Birmingham, U.K.: Wrox Press Ltd.

Bachimont, B., Isaac, A., Troncy, R. Semantic Commitment for Designing Ontologies:
A Proposal. (2002). In Knowledge Engineering and Knowledge Management:
Ontologies for the Semantic Web, 13th Annual Conference, Siguenza, Spain, October
2002.

Bechhofer, Sean (2001). OilEd 3.4 Manual. Department of Computer Science:
University of Manchester, U.K.

[2] Bechhofer, S., Horrocks, I., Goble, C., Stevens, R. (2001). OilEd: A Reasonable
Ontology Editor for the Semantic Web. Information Management Group, Department of
Computer Science: University of Manchester, U.K.

Beckett, D., Grant, Jan. (W3C SWAD Report, 23 January 2003). Semantic Web
Scalability and Storage: Mapping Semantic Web Data with RDBMSes. [Online].
Available:
[http://www.w3.org/2001/sw/Europe/reports/scalable_rdbms_mapping_report/], March
17, 2003.

Berners-Lee, T., Hendler, J., Lassila,O. (2001). The Semantic Web. Scientific American
[Online]. Available:
[http://www.scientificamerican.com/article.cfm?articleID=00048144-10D2-1C70-
84A9809EC588EF21&catID=2], July 9, 2003.

[2] Berners-Lee, T., Connolly, D., Swick, R. (1999). Web Architecture: Describing and
Exchanging Data. [Online]. Available: [www.w3.org/1999/04/WebData], July 9, 2003.

256

Bertino, E., Catania, B., Zarri, G. P. (2001). Intelligent Database Systems. San
Francisco, California: Addison-Wesley.

Bequet, H., Kunnumpurath, M., Rhody, S., Tost, A. (2002). Beginning Java Web
Services Birmingham, UK: Wrox Press Ltd.

Birbeck, M., Duckett, J., Gudmundsson, O., Kobak, P., Lenz, E., Livingstone, S.,
Marcus, D., Mohr, S., Pinnock, J., Visco, K., Watt, A., Williams, K., Zaev, Z., Ozu, N.
(2002). Professional XML, 2nd Edition Birmingham, UK: Wrox Press Ltd.

Booch, G. Object-Oriented Analysis and Design with Applications. (2001). San
Francisco, California: Addison-Wesley.

Borenstein, J., Fox, J. (2003). Web Services Journal. SYS-CON Publishing. Semantic
Discovery for Web Services: A Step Toward Fulfillment of the Vision.

Cardon, A., Durand, S. A Model of Crisis Management System including Mental
Representations. (1997) In Proceedings of AAAI Spring Symposium.

Campbell, K. E., Oliver, D. E., Spackman, K. A., Shortliffe, E. H. Representing
Thoughts, Words and Things in the UMLS. (1998).

Carey, S. A. Battle Management Language (BML): A Simulation to C4I (SIMCI
Perspective (White Paper, 4 November 2002). Northrop Grumman Information
Technology.

[2] Carey, S. A., Kleiner, M. S., Hieb, M. R. Brown, R. Development of a C2 Standards
of Task Representation for C4ISR Systems, Simulations and Robotics: Battle
Management Language.

Daconta, M., Obrst, L., Smith, K. (2003). The Semantic Web: A Guide to the Future of
XML, Web Services and Knowledge Management. Indianapolis, Indiana: Wiley
Publishing Inc.

Davenport, T. H., Prusak, L. (1998). Working Knowledge: How Organizations Manage
What They Know. Boston, Massachusetts: Harvard Business School Press.

Davies, J., Fensel, D., Van Harmelen, F. (2003). Towards the Semantic Web: Ontology
Driven Knowledge Management. West Sussex, U.K.: John Wiley and Sons.

Dean, M. (2002) Guest Lecture SW 4599 Automated Hardware/Software Integration in
DoD. Naval Postgraduate School, 20 November 2002 (Video Teleconference).

Deitel, P. J. (2002). Java, How to Program, Fourth Edition. Upper Saddle River, New
Jersey: Prentice-Hall, Inc.

Description Logics. (2003) Whitepaper from Network Inference Holdings Ltd.

257

Description Logic Handbook. (2003). Eds Baader, F., Calvanese, D., McGuinness, D.,
Nardi, D., Patel-Schneider, P. Cambridge, U.K.: Cambridge Press.

Edwards, W. K. (1999). Core Jini. Prentice-Hall, Inc.: Upper Saddle River, New Jersey.

[2] Edwards, W. K. Tom Rodden. (2001). Jini, Example by Example. Upper Saddle
River, New Jersey: Prentice-Hall, Inc

Fagin, R., Halpern, J. Y., Moses, Y., Vardi, M. Y. (1995) Reasoning About Knowledge.
Cambridge, Massachusetts: MIT Press.

Fernandez, M., Perez, A., Vicente, A. Towards a Method to Conceptualize Domain
Ontologies. (unk). Universidad Politécnica de Madrid.

Fikes, R., McGuinness, D. (unk). Creating, Maintaining, and Integrating Understandable
Knowledge Bases. KSL Labratories, Stanford University.

Freidman-Hill, E. (2003). Jess in Action: Rule Based Systems in Java. Greenwich,
Connecticut: Manning Publications Company.

[2] Friedman-Hill, E. (2003). Jess, The Expert System Shell for the Java Platform
(Version 6.1RC1). Distributed Computing Systems, Sandia National Laboratories:
Livermore: California.

Fowler, M. Analysis Patterns: Reusable Object Models. (1997). Menlo Park,
California:Addison Wesley.

Gardenfors, P. (2000). Conceptual Spaces: The Geometry of Thought. Cambridge,
Massachusets: MIT Press.

Gell-Mann, M. (1997). The Simple and the Complex. In Alberts, D. S., Czerwinski, T.
J. (Eds.), Complexity, Global Politics, and National Security. National Defense
University.

Gladwell, M. (2002). The Tipping Point: How Little Things Can Make a Big
Difference. New York: Back Bay Books.

Graham, S., Simeonov, S., Boubez, T., Davis, D., Daniels, G., Nakamura, Y., Neyama,
R. (2002). Building Web Services with Java™. Sams Publishing, Indianapolis, Indiana.

Gruber, T. R. Toward Principles for the Design of Ontologies Used for Knowledge
Sharing. (Revision 23 August 1993). In Formal Ontology in Conceptual Analysis and
Knowledge Representation. (Eds.) Guarino, N., Poli, R. [Online]. Available:
[http://ksl.stanfors.edu/KSL 93-04], March 17, 2003.

Hayek, F. A. The Use of Knowledge in Society. Reprinted from the American Economic
Review, XXXV, No. 4; September 1945, pp. 519-30.

258

 [1] Hayek, F.A. Economics and Knowledge. Reprinted from Economica IV (new ser.,
1937), pp. 33-54.

Horner, D. Semantic Web (SWEB) Integration in ESG Enabling Experimentation (EEE).
2002. Naval Postgraduate School, Monterey, California.

Horrocks, Ian (unk). The FaCT System. Medical Informatics Group, Department of
Computer Science: University of Manchester, U.K.

Hunter, D., Cagle, K., Dix, C., Kovack, R., Pinnock, J., Rafter, J. (2002). Beginning
XML, 2nd Edition. Birmingham, UK: Wrox Press Ltd.

Jasper, R., Uschold, M. (1999?). A Framework for Understanding and Classifying
Ontology Applications. Boeing Math and Computing Technology: Seattle, Washington.

(Jini AO) Jini™ Architectural Overview: Technical White Paper. Sun Microsystems. ©
1999 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, California 94303 U.S.A.

(Jini EO) Jini™ Network Technology: An Executive Overview. Sun Microsystems. ©
2001 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, California 94303 U.S.A.

(Jini Now?) Why Jini™ Technology Now? Sun Microsystems. © 1999 Sun
Microsystems, Inc. 901 San Antonio Road, Palo Alto, California 94303 U.S.A.

(Jini TE) Jini™ Technology and Emerging Network Technologies. Sun Microsystems.
© 1999 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, California 94303
U.S.A.

Jini vs. Web Services - Ein Leistungsvergleich. Tobias Schwaegli. September 2002.
ETH Zurich, 8092 Zurich, Switzerland.

Johnson, S. (2001). Emergence: The Connected Lives of Ants, Brains, Cities and
Software. New York: Scribner.

Joint Vision 2020. (2000). Office of Primary Responsibility: Director for Strategic Plans
and Policy, J5, Strategy Division.

Kahn, M., Cicalese, C., Brake, D., Glahe, A., Brill, D., Tsurutani, B., Ito, J., Combs, V.
(2002) DARPA CoABS Grid Users Manual. Version 4 – Draft, October 2002. Global
InfoTek, Inc. 1920 Association Drive, Suite 200, Reston, Virginia 20191.

Kim, H. M. Exploiting Small-Worlds of the Sematic Web using Mata-Data Based
Shared Ontologies: Using Structure and Semantics to Connect Heterogeneous, Local
Ontologies. (2002). In Proceedings of WITS.

Klein, M. Combining and Relating Ontologies: An Analysis of Problems and Solutions.
Amsterdam, The Netherlands: Vrije Universiteit, Division of Mathematics and Computer
Science.

259

[2] Klein, M. Supporting Evolving Ontologies on the Internet. Amsterdam, The
Netherlands: Vrije Universiteit, Division of Mathematics and Computer Science.

Knott, Anne M. Knowledge Dynamics: Reconciling Competing Hypotheses from
Economics and Sociology. University of Pennsylvania: The Wharton School of
Business. (2001).

Kumaran, S., Kumaran, I. Jini Technology: An Overview. (2001). Prentice Hall, Inc.
Upper Saddle River: New Jersey.

Kurzweil, R. The Age of Intelligent Machines (1990). MIT:MIT Press.

Levesque, H., Lakemeyer, G. (2000). The Logic of Knowledgebases. Massachusetts:
MIT Press.

Maedche, A. (2002). Ontology Learning for the Semantic Web. Boston, Massachusetts:
Kluwer Academic Publishers.

[2] Maedche, A., Staab, S., Stojanovic, N., Studer, R., Sure, Y. Semantic Portal: The
SEAL Approach. (2003). In Spinning the Semantic Web: Brining the World Wide Web
to its Full Potential. Eds Fensel, D., Hendler, J., Lieberman, H., Wahlster, W.
Massachusetts: MIT Press.

Marakas, G. M. (1999). Decision Support Systems in the 21st Century. New Jersey:
Prentice Hall.

Marinescu, D.C. (2002). Internet-Based Workflow Management: Toward a Semantic
Web. New York: John Wiley and Sons.

McGuinness, D. L., Van Harmelen, F. (W3C Working Draft, 31 March 2003). Web
Ontology Language (OWL): Overview [Online]. Available:
[http://www.w3.org/TR/owl-features/], March 17, 2003.

[2] McGuinness, D. Conceptual Modeling for Distributed Ontology Environments.
(2000). In Proceedings of Eighth International Conference on Conceptual Structures
Logic, Linguistic, and Computational Issues 14-18 August 2000.

Mitra, P., Wiederhold, G., Kersten, M. (2000). A Graph-Oriented Model for
Articulation of Ontology Interdependencies. Stanford University, CWI.

Moczar, L., Aston, J. Cocoon Developers Handbook. (2002). Sams Publishing,
Developer’s Library, 201 West 103rd Street, Indianapolis, Indiana 46290.

Motter, A. E., deMoura, A., Lai, Y. C., Dasgupta, P. (2002) Topology of the Conceptual
Network of Language. The American Physical Society, Vol. 65, 065102- (1-4).

Nagappan, R., Skoczylas, R., Sriganesh, R. Developing Java Web Services. (2003).
Indianapolis, Indiana: Wiley Publishing, Inc.

260

Nardi, D., Brachman, R. (2003). An Introduction to Description Logics. In Description
Logic Handbook. Eds. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-
Schneider, P. Cambridge, U.K.: Cambridge Press.

Network Inference. (2003). Description Logics (White Paper).

Nissen, M. E. (2002). An Extended Model of Knowledge-Flow Dynamics. Published in
Communications of the Association for Information Systems (Volume 8) 251-266.

[2] Nissen, M., Kamel, M., Sengupta, K. (2000). Integrated Analysis and Design of
Knowledge Systems and Processes. In Information Resources Management Journal,
January-March 2000.

Noy, N. F, McGuinness, D. L. Ontology Development 101: A Guide to Creating Your
First Ontology. [Online]. Available:
[http://www.ksl.stanford.edu/people/dlm/papers/ontology-tutorial-noy-mcguinness.pdf],
March 17, 2003.

O’Dell, C., Grayson, C. J. Jr. (1998). If Only We Knew What We Know. New York:
The Free Press.

Ogden, C. K., Richards, I. A. (1923). The Meaning of Meaning. New York: Harcourt,
Brace and World Inc.

Omelayenko, Borys. (No Date). RDFT: A Mapping Meta-Ontology for Business
Integration. Amsterdam, The Netherlands: Vrije Universiteit, Division of Mathematics
and Computer Science.

Obrst, L., Liu, H. (2003). Knowledge Representation, Ontological Engineering , and
Topic Maps. In Park, J., Hunting, S. (Eds.), XML Topic Maps: Creating and Using
Topic Maps for the Web.

Parsons, David (2003). Introductory Java. London, U.K.: Continuum.

Patel-Schneider, P., Hayes, P., Horrocks, I. (W3C Working Draft, 31 March 2003).
OWL Web Ontology Language Semantics and Abstract Syntax [Online]. Available:
[http://www.w3.org/TR/owl-features/], March 17, 2003.

Peter, L. (1986). The Peter Pyramid. New York: William Morrow.

Peterson, B., Stine, J., Darken, R. (submitted). Eliciting Knowledge from Military Ground
Navigators. In Berndt Brehmer, Rannan Lipshitz, and Henry Montgomery (Eds.), How
Professionals Make Decisions. Washington D.C.: American Psychological Association.

Pohl, J. Adapting to the Information Age. (2000). First Published at InterSymp 2000, Bin
Baden, Germany.

261

[2] Pohl, J. Information Centric Decision-Support Systems: A Blueprint for
‘Interoperability’. (2000).

Professional XML 2nd Edition. (2001). Wrox Press Ltd:U.K.

Riedl, Reinhard. (2002). Some Critical Remarks in Favour of IT-Based Knowledge
Management. In Knowledge Management and Information Technology, Vol. III, No.1,
February 2002.

Roberts, Angus. An Introduction to OilEd: OilEd Version 3.3. Department of Computer
Science: University of Manchester, U.K.

Russel, S., Norvig, P. (1995). Artificial Intelligence: A Modern Approach. New Jersey:
Prentice Hall.

Schmitt, John F. Command and (Out of) Control: The Military Implications and the
Complexity Theory. In Complexity, Global Politics and National Security (Eds.) Alberts,
D. S., Czerwinski, T. J. Institute for National Strategic Studies: National Defense
University, 1997.

Shaw, M. L. G., Gaines, B. R. (1995) Comparing Conceptual Structures: Consensus,
Conflict, Correspondence and Contrast. University of Calgary: Knowledge Science
Institute.

Shaw, M. L. G., Gaines, B. R. Kelly’s “Geometry of Psychological Space” and its
Significance for Cognitive Modeling. The New Psychologist, 23-31 October, 1992.

Sivashanmugam, K., Verma, K., Sheth, A., Miller, J. (unk). Adding Semantics to Web
Services Standards. Large Scale Distributed Information Systems (LSDIS) Lab,
Department of Computer Science, University of Georgia.

Smith, M. K., Welty, C., McGuinness, D. (W3C Working Draft, 10 February 2003).
Web Ontology Language (OWL) Guide (Version 1.0) [Online]. Available:
[http://www.w3.org/TR/2003/WD-owl-guide-20030210/], March 17, 2003.

Sowa, J. F. (2000). Knowledge Representation: Logical, Philosophical, and
Computational Foundations. Pacific Grove: Brooks/Cole.

Stine, J. (2000) Representing Tactical Land Navigation Expertise. Master’s Thesis,
Naval Postgraduate School, Monterey, California.

Sterman, J. D. (2003) Business Dynamics: Systems Thinking and Modeling for a
Complex World. McGraw-Hill, United States.

Sure, Y., Studer, R. (2003). A Methodology for Ontology-Based Knowledge
Management. In Towards the Semantic Web: Ontology Driven Knowledge
Management. Eds. Davies, J., Fensel, D., Van Harmelen. West Sussex, U.K.: John
Wiley and Sons.

262

Tanenbaum, A., van Steen, M. (2002). Distributed Systems: Principles and Paradigms.
Upper Saddle River, New Jersey: Prentice-Hall, Inc.

Vanderschraaf, Peter. “Common Knowledge”, The Stanford Encyclopedia of Philosophy
(Summer 2002 Edition), Edward N. Zalta (ed.), URL =
[http://plato.stanford.edu/archives/sum2002/entries/common-knowledge], May 13, 2003.

Van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D. L., Patel-Schneider, P. F.,
Stein, L. A. (W3C Working Draft, 21 February 2003). Web Ontology Language (OWL)
Reference (Version 1.0) [Online]. Available: [http://www.w3.org/TR/owl-ref/], March
17, 2003.

Vatant, B. Topic Maps from Representation to Identity: Conversation, Names, and
Published Subject Indicators. (2003) In XML Topic Maps (Eds.), Park, J., Hunting, S.
SanFrancisco: Addison-Wesley.

Von Clausewitz, C. On War. (1976). Princeton, New Jersey: Princeton University
Press.

W3C Semantic Web. [Online]. Available: [http://www.w3.org/2001/sw/#pub], July 9,
2003.

Watts, D. (1999). Network, Dynamics, and the Small World Phenomenon. In American
Journal of Sociology, Volume 105, Issue 2, (September 1999), pp. 493-597.

Wachsmuth, I., Gangler, B. (1991) Knowledge Packets and Knowledge Packet
Structures. In O.Herzog & C.R. Rollinger (Eds.), Text Understanding in LILOG:
Integrating Computational Linguistics and Artificial Intelligence.

Weiss, G. (2001). Multiagent Systems. A Modern Approach to Distributed Artificial
Intelligence. Cambridge: Massachusetts Institute of Technology.

Williams, K., Barnes, D., Likes, B., Mohr, S., Morris, P., Novick, A., Polshaw, A., Sabin,
S., Tennison, J. (2002). SQL Server XML Distilled. U.K.: Curlingstone Publishing,
Ltd.

XML.com [http://www.xml.com/pub/a/2001/06/20/databases.html], July 8, 2003, Author:
Igor Dayen.

XML.com [http://www.xml.com/pub/a/2002/01/09/xmldb_api.html], July 8, 2003,
Author: Kimbro Staken.

XML.com Introduction to Native XML Databases,
[http://www.xml.com/pub/a/2001/10/31/nativexmldb.html], July 8, 2003, Author:
Kimbro Staken.

263

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Dan C. Boger
Naval Postgraduate School
Monterey, California

4. Alex Bordetsky

Naval Postgraduate School
Monterey, California

5. Kim Swecker
SPAWAR
San Diego, California

6. Douglas P. Horner

Naval Postgraduate School
Monterey, California

7. Sam Chance
Naval Postgraduate School
Monterey, California

8. Marty Hagenston

Naval Postgraduate School
Monterey, California

